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1. Background

A ∈ M(2,Z) expanding. D a complete set of coset represen-
tatives of Z2/AZ2. T = T (A,D) satisfies T =

⋃
d∈D A−1(T +

d).

Theorem A. (Bandt-Gelbrich 94, Bandt-Wang 01) In a pla-
nar lattice tiling by a disklike self affine tile T , T either has

(a) 6 edge neighbors, or

(b) 8 neighbors with 4 vertex neighbors and 4 edge neighbors.

Under suitable connectivity conditions, the converse is true.

Theorem B. (Leung-Lau 07) Let T = T (A,D) with A ∈
M(2,Z) expanding, andD = {0, v, . . . , (| det A|−1)v} consec-
utive collinear, where v ∈ Z2, v, Av independent. Let f (x) =
x2 + px + q be the characteristic polynomial of A. Then

(a) T is dislike if and only if 2|p| ≤ |q + 2|.
(b) If T is disklike, T is a ‘square tile’ if and only if p = 0.

(The special case of tilings by fundamental domains of CNS:
Akiyama-Thuswaldner 04.)

Question. What is the structure of the tiling generated by
a non disklike T ? Three aspects:

(a) the number and position of its neighbors;

(b) the way T intersects with its neighbors;

(c) describe these in terms of the characteristic polynomial of
A.

( Special case: for non-disklike T withD consecutive collinear.)
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2. Simplifications

Lemma 1. T (A,D) as above and the tiling it generates is
affine equivalent to T (C, E) and its tiling, where

C =

(
0 1
−q −p

)
, E = {di = (i, 0)t, i = 0, . . . , |q| − 1}.

Lemma 2. Let T = T (A,D), T̃ = T (−A,D). Then the
tilings they generate are affine equivalent.

Can assume:

A =

(
0 1
−q −p

)
, D = {di = (i, 0)t, i = 0, . . . , |q| − 1}.

4 cases. Let ν1, ν2 be the eigenvalues of A−1.

1. p2 > 4q, q > 0, p < 0. (⇔ 1 > ν1 > ν2 > 0.)

2. p2 > 4q, q < 0, p > 0. ( ⇔ 1 > ν1 > 0 > ν2 > −1.)

3. p2 < 4q. Complex eigenvalues.
A = [0, 1;−3,±3], [0, 1;−5,±4], [0, 1;−7,±5].

4. p2 = 4q. 1 > ν1 = ν2 > 0, one independent eigen-
vector. (2 independent eigenvectors ⇒ disklike). A =
[0, 1;−4,±4], [0, 1;−9,±6].

Cases 1 and 4 can be considered simultaneously.
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Definitions

(a) T (m,n) = T + (m,n)t.

(b) T
(m,n)
i1···i` , ij ∈ {0, . . . , |q|−1} are the `-level pieces of T (m,n).

(c) T (m,n) = T + (m,n)t is in the k-th layer if (m,n) =
(k, 0) + l(−p, q).

Two tiles are in the same layer if their first level pieces are
aligned along the same line of direction A−1d1.

(d) T and T ′ are vertex neighbors if T ∩ T ′ is finite;

(e) Cantor neighbors if T∩T ′ is a totally disconnected perfect
set, possibly adjoining a countable set, resulting in a totally
disconnected closed set;

(f) edge neighbors if T ∩T ′ contains a compact connected set
of more than one point.
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3. Results

Theorem 1. Let T = T (A,D), A = [0, 1;−q,−p], q > 0,
p < 0, D = {di = (i, 0)t, i = 0, . . . , q − 1}. Let

K =

⌊
q − 1

p + q + 1

⌋
.

Then

(a) T has 4K + 2 neighbors, 2 in each of the 2K + 1 layers.

(b) For k = 1, . . . K, the neighbors in the k-th layer are
T (k,0)−k(−p,q) and T (k,0)−(k−1)(−p,q). Those in the -k-th layer
are T−(k,0)+k(−p,q) and T−(k,0)+(k−1)(−p,q). The ones in the 0-th
layer are T±(−p,q).

(c) If K = (q − 1)/(p + q + 1), the K, -K-th layer neighbors
are vertex neighbors. If K < (q − 1)/(p + q + 1), they are
Cantor neighbors.

(d) For k = 2, . . . , K− 1, the k-type intersection is the union
of the miniatures of k-type and k+1-type intersections. The
neighbors in these layers are Cantor neighbors.

(e) The neighbors in the −1, 0, 1-st layers are edge neighbors.

Remark: Together with the next two theorems,

(a) there are no neighbors with countable intersection;

(b) these are all the possible neighbor types.
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Figure 2. Layers of neighbors.

(a) Layers of neighbors.
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Figure 3. The magnified neighbors.

(b) magnified neighbors.
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Theorem 2. Let T = T (A,D), A = [0, 1;−q,−p], q < 0,
p > 0, D = {di = (i, 0)t, i = 0, . . . , q − 1}. Let

K =

⌊ |q| − 1

|q| − p− 1

⌋
.

Then

(a) T has 4K + 2 neighbors, 2 in each of the 2K + 1 layers.

(b) For k = 1, . . . K, the neighbors in the -k-th layer are
T (−k,0)−k(p,−q) and T−(k,0)−(k−1)(p,−q). The ones in the k-th lay-
ers are T (k,0)+k(p,−q) and T (k,0)+(k−1)(p,−q). The ones in the 0-th
layer are T±(p,−q).

(c) If K = (|q|−1)/(|q|−p−1), the K, -K-th layer neighbors
are vertex neighbors. If K < (|q| − 1)/(|q| − p − 1), they are
Cantor neighbors.

(d) For k = 2, . . . , K−1, the -k-type intersection is the union
of the miniatures of -k-type and -(k+1)-type intersections. The
neighbors in these layers are Cantor neighbors.

(e) The neighbors in the −1, 0, 1-st layers are edge neighbors.
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Figure 5. The tile with A = [0, 1;−3, 3]

Theorem 3. Let T = T (A,D), A = [0, 1;−3,±3], [0, 1;−5,±4],
[0, 1;−7,±5], D = {di = (i, 0)t, i = 0, . . . , | det A| − 1}. Then

(a) T has 10 neighbors, 2 in each of 5 layers.

(b) There are 2 vertex neighbors in each of the 2, -2-nd layers.
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4. Proof of Theorem 1.

Step 1.

Lemma. (a) T (A,D) is contained in the bounding parallel-
ogram P with vertices

p0 = (0, 0)

p1 =

(
2q(q−1)

(p2+p
√

p2−4q−2q)(p+q+1)
,

−(p+
√

p2−4q)q(q−1)

(p2+p
√

p2−4q−2q)(p+q+1)

)

p2 = (q − 1)(A− I)−1d1 =
(

(−p−1)(q−1)
p+q+1 , q(q−1)

p+q+1

)

p3 = p2 − p1.

(b) T (A,D) is contained in the bounding hexagon H with
vertices
p0 = (0, 0)
p4 = A−1p1

p5 = A−1p2 = p2 − p7 = (q − 1)(A− I)−1d1 − (q − 1)A−1d1

p2 = (q − 1)(A− I)−1d1

p6 = p2 − p4 = (q − 1)(A− I)−1d1 − A−1p1

p7 = (q − 1)A−1d1.

H is the convex hull of the first level approximation of T ,
F1(P ) = ∪q−1

i=0Pi.
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Figure 7. The bounding parallelogram and hexagon for A = [0, 1;−6, 5].

Reason:

• From the approximations Fk({0}) of T , T is in the acute
cone in the 1st quadrant bounded by the directions of
A−1d1 and v1, where A−1v1 = λ1v1.

• Center of symmetry of T : z = 1
2(q− 1)(A− I)−1d1 (Duda

07). Hence T is inside the parallelogram.

• The bounding hexagon H is the convex hull of the 1-level
approximation F1(P ) of T .

Remark 0 ∈ T ⇒ the tip p2 = (q − 1)(A − I)−1d1 is in T .
So are its iterated images.
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Figure 8. Number of layers: A = [0, 1;−6, 5].

Step 2.

Claim. There are at most 2K + 1 layers that contain a
neighbor of T .

.
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(b) T with two vertical neighbors.

Figure 10. (a) number of 2nd layer neighbors is at most 2. (b) same for 1st layer neighbors.

Step 3.

Claim. There are at most 2 neighbors of T in each of the
layers.

Reason: Use bounding parallelograms and bounding hexagons
to separate the non-neighbors from T .



18

Step 4.

Claim. For k = 1, . . . , K, the tiles T (k,0)−k(−p,q) and T (k,0)−(k−1)(−p,q)

are the k-layer neighbors of T . The 0-layer neighbors are T (−p,q)

and T (p,−q).

Reason: Use radix expansions to show that the indicated
tiles has common points with T .
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Figure 11. Vertex neighbors. A = [0, 1;−5, 5].

Step 5.

Claim. If K = q−1
p+q+1, the K, -K-layer neighbors are vertex

neighbors.

Reason: Calculate. The tip of T (K,0)−K(−p,q) is 0, and hence
is a vertex neighbor. Neighbors in the same layer are of the
same type. By symmetry, also for the -K-layer.
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Figure 12. The intersection of the 1st level approximations.

Claim. If K < q−1
p+q+1, the K, -K-layer neighbors are Cantor

neighbors.

Reason: Apply A−1 to the above picture to see what’s hap-
pening at the 2nd level.

Use induction.
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Figure 13. The intersection of the 2nd level approximations.
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.



22

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

magnification by A of P(3,0)−3(5,5),
P and their first level
parallelograms

Figure 15. A = [0, 1;−5, 5]. The 3rd layer neighbor is a Cantor neighbor.

Step 6.

Claim. For k = 2, . . . , K − 1, the k-type intersection is the
union of the miniatures of k-type and k+1-type intersections.
The neighbors in these layers are Cantor neighbors.

Reason: The next level in the region of k-type intersection
can be seen by applying A−1 to the picture.

.

.
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Figure 17. The magnified 1st level parallelograms of T and its 2nd layer neighbor T (−8,−10).

Step 7.

Claim. For k = −1, 0, 1, the k-th layer neighbors are edge
neighbors.

Reason:

• Union of totally disconnected closed sets is totally discon-
nected ⇒ some of the neighbors in the 0, 1,−1-st layers
are edge neighbors.

• Neighbors in the 0-th layer and 1,−1-st layers are of the
same type.

QED
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5

Proof of Theorem 3.

• Find bounding polygons for the tiles. Through trial and
error find P such that fi(P ) ⊂ P .

• To see that there are at most 5 layers of neighbors, at
most 2 in each layer, use bounding polygons to separate
the non-neighbors.

• Use radix expansion to show that there are exactly 2 neigh-
bors in each of the 5 layers.

• To see that the 2, -2nd-layers are vertex neighbors, repeat-
edly magnify the `-level approximations of T and T (2,0)−2(|p|,q).
The intersection of the magnified diagrams remains un-
changed. So the actual intersection is a point.
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Figure 18. A bounding polygon of the exceptional tile.
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Figure 19. ‘Vertex neighbor’ proof.


