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1. BACKGROUND

A € M(2,7Z) expanding. D a complete set of coset represen-
tatives of Z*/AZ*. T = T(A, D) satisfies T = Jyep AT +
d).

Theorem A. (Bandt-Gelbrich 94, Bandt-Wang 01) In a pla-
nar lattice tiling by a disklike self affine tile 7', T" either has

(a) 6 edge neighbors, or
(b) 8 neighbors with 4 vertex neighbors and 4 edge neighbors.

Under suitable connectivity conditions, the converse is true.

Theorem B. (Leung-Lau 07) Let T' = T(A,D) with A €
M (2,7) expanding, and D = {0, v, ..., (| det A|—1)v} consec-
utive collinear, where v € Z?, v, Av independent. Let f(x) =
x? + px + q be the characteristic polynomial of A. Then

(a) T is dislike if and only if 2|p| < |q + 2|.
(b) If T is disklike, T is a ‘square tile’ if and only if p = 0.

(The special case of tilings by fundamental domains of CNS:
Akiyama-Thuswaldner 04.)

Question. What is the structure of the tiling generated by
a non disklike T Three aspects:

(a) the number and position of its neighbors;
(b) the way T intersects with its neighbors;

(¢) describe these in terms of the characteristic polynomial of

A,

( Special case: for non-disklike T" with D consecutive collinear.)
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FiGURE 1. The relevant regions.
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2. SIMPLIFICATIONS

Lemma 1. T(A,D) as above and the tiling it generates is
affine equivalent to T'(C, £) and its tiling, where

o—(_oq fp), & = {di = (i,0).i = 0..... | 1}.

Lemma 2. Let T = T(A,D), T = T(—A, D). Then the
tilings they generate are affine equivalent.

Can assume:

0 1
A= D={d=(i00i=0,...,|q| —1}.
(° 1) p=ta—woii=old-1)

4 cases. Let 11,15 be the eigenvalues of A~
1. p?>4q,¢>0,p<0. (& 1>v;>15>0)
2. p°>4q,q<0,p>0. (&1>v;>0>19 > —1)

3. p? < 4q. Complex eigenvalues.

4. p*> = 4q. 1 > 11 = v, > 0, one independent eigen-
vector. (2 independent eigenvectors = disklike). A =
0, 1; —4, £4], [0, 1; =9, 6]

Cases 1 and 4 can be considered simultaneously.



Definitions
(a) T =T 4 (m, n).

() TV i € {0,. .., |q|—1} are the f-level pieces of T(m).

i1-ip
(c) Tmn) — T 4 (m,n)" is in the kth layer if (m,n) =
(k,0) +(=p,q).

Two tiles are in the same layer if their first level pieces are
aligned along the same line of direction A~'d;.

(d) T and T" are vertex neighbors it T N'T" is finite;

(e) Cantor neighborsif TNT" is a totally disconnected perfect
set, possibly adjoining a countable set, resulting in a totally
disconnected closed set;

(f) edge neighborsif T NT" contains a compact connected set
of more than one point.



3. RESULTS

Theorem 1. Let T =T(A,D), A=10,1;—¢q,—p|, ¢ > 0,
p<0,D={d=(i0)i=0,. .. q—1} Let

p+qg+1
Then

(a) T has 4K + 2 neighbors, 2 in each of the 2K + 1 layers.

(b) For k = 1,... K, the neighbors in the kth layer are
Tk =k(=pa0) and TEO=(k=1(=r2)  These in the -kth layer
are T~ (F0+k(=pa) gpnd T~ kO0+(E=1(=r.2)  The ones in the (-th
layer are TH(=P0),

(c)f K=(q—1)/(p+q+1), the K, -K-th layer neighbors
are vertex neighbors. If K < (¢ — 1)/(p + q + 1), they are
Cantor neighbors.

(d) For k =2,..., K —1, the k-type intersection is the union
of the miniatures of ktype and k+I-type intersections. The
neighbors in these layers are Cantor neighbors.

(e) The neighbors in the —1, 0, 1-st layers are edge neighbors.

Remark: Together with the next two theorems,
(a) there are no neighbors with countable intersection;
(b) these are all the possible neighbor types.
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FIGURE 2. Layers of neighbors.

(a) Layers of neighbors.
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FiGURE 3. The magnified neighbors.

(b) magnified neighbors.
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Theorem 2. Let T =T(A,D), A=10,1;—¢q,—p|, ¢ <0,
p>0D={d; = (:,0),i=0,...,q—1}. Let

1
K_{ 4 J
gl —p—1
Then

(a) T has 4K + 2 neighbors, 2 in each of the 2K + 1 layers.

(b) For k = 1,... K, the neighbors in the -kth layer are
TRO=kp=0) gnd T~ *0=(E=1{.=0)  The ones in the kth lay-
ers are TW0+EP.=0) gnd TEO+E=D{E=9) The ones in the 0-th
layer are TP,

() If K = (|g|—1)/(|lq|—p—1), the K, -K-th layer neighbors
are vertex neighbors. If K < (|¢| —1)/(]q| — p — 1), they are
Cantor neighbors.

(d) For k = 2,..., K—1, the -ktype intersection is the union
of the miniatures of -Ak-type and -(k+1 )-type intersections. The
neighbors in these layers are Cantor neighbors.

(e) The neighbors in the —1, 0, 1-st layers are edge neighbors.
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FIGURE 4. A tile in this flip-over case.
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FIGURE 5. The tile with A =[0,1; -3, 3]
Theorem 3. LetT =T(A, D), A=10,1;-3,£3],[0,1; =5, £4],
0,1;—=7,45], D={d; = (:,0)",i =0,...,|det A| — 1}. Then
(a) T has 10 neighbors, 2 in each of 5 layers.
(b) There are 2 vertex neighbors in each of the 2, -2-nd layers.
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FIGURE 6. The neighbors of the exceptional tile.
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4. PROOF OF THEOREM 1.

Step 1.

Lemma. (a) T(A,D) is contained in the bounding parallel-
ogram P with vertices

Po = (07 O)
Dy = 2q(q—1) —(p++/ P> —4q)q(g—1)
(P2 +p\/ P2 —4g-2¢) (p+a+1) (P2+py/p2—4q—2q) (p+q+1)

P = (g — (A= 1)7dy = (F2lecl) o))
p3 = P2 — P1-

(b) T(A, D) is contained in the bounding hexagon H with
vertices
Po = (Ov O>
ps=A""p
ps=A"pr=py—pr=(¢—)(A-1)""d — (¢ - 1)A™d,
pp=(q—1)(A-1I)""d
ps=p2—ps=(q—1)(A-1I)""dy — A™'p,
pr=(q—1)A"ld,.
H is the convex hull of the first level approximation of T,
FP) = UL P.
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FIGURE 7. The bounding parallelogram and hexagon for A = [0, 1; —6, 5].

Reason:

e From the approximations F*({0}) of T', T is in the acute

cone in the 1st quadrant bounded by the directions of
A71d; and vy, where A~ v, = \joy.

e Center of symmetry of T z = 1(¢—1)(A—1I)~'d; (Duda
07). Hence T is inside the parallelogram.

e The bounding hexagon H is the convex hull of the 7-level
approximation F!(P) of T.

Remark 0 € T = the tipps = (¢ — 1)(A—I)"'dy isin T.
So are its iterated images.
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FIGURE 8. Number of layers: A = [0,1;—6, 5].

Step 2.

Claim. There are at most 2K + 1 layers that contain a
neighbor of T



16

p=-5
g=5 -

20 Keg

15

In this case, -
K=(a-Di(p+a+1)

e
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A'ldl or (-p,q)" direction

along these lines, their
bounding polygons -
‘intersect

that of T. They are -
possible neighbors of T.

‘For some tiles with apexes

FIGURE 9.
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Number of layers: A = [0, 1;—5,5].
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(b) T with two vertical neighbors.
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FIGURE 10. (a) number of 2nd layer neighbors is at most 2. (b) same for 1st layer neighbors.

Step 3.
Claim.

layers.

Reason:

There are at most 2 neighbors of T' in each of the

Use bounding parallelograms and bounding hexagons
to separate the non-neighbors from 7.
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Step 4.

Claim. Fork = 1,..., K, the tiles T =+=p0) anq T*0)=(k=1)(=p.q)
are the k-layer neighbors of T. The (-layer neighbors are T(~7:4)

and T~

Reason: Use radix expansions to show that the indicated
tiles has common points with 7.
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magnified 1st level parallelograms ;
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FIGURE 11. Vertex neighbors. A = [0, 1;—5,5].

Step .
Claim. If K = pj—;j—l’ the K, -K-layer neighbors are vertex
neighbors.

Reason: Calculate. The tip of TW0-K(=r4) i3 (. and hence
is a vertex neighbor. Neighbors in the same layer are of the
same type. By symmetry, also for the -K-layer.
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p=-5,4=6
The magnified 1st level
.pieces.of T-and

its K=2nd layer
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FIGURE 12. The intersection of the 1st level approximations.

Claim. If K < =L the K, -K-layer neighbors are Cantor

neighbors.

p+q+1’

Reason: Apply A~! to the above picture to see what’s hap-
pening at the 2nd level.

Use induction.
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F1GURE 13. The intersection of the 2nd level approximations.

p=-5, =6
The magnified 2nd level
pieces : ! _
of T and its:K=2nd layer
neighbor
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FIGURE 14. Zoom in.
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FIGURE 15. A =10,1;—5,5]. The 3rd layer neighbor is a Cantor neighbor.

Step 6.

Claim. For £ = 2,..., K — 1, the ktype intersection is the
union of the miniatures of ktype and k+I-type intersections.
The neighbors in these layers are Cantor neighbors.

Reason: The next level in the region of Aktype intersection
can be seen by applying A~! to the picture.



FIGURE 16. Zoom.
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FIGURE 17. The magnified 1st level parallelograms of T' and its 2nd layer neighbor T(=8-19),

Step 7.

Claim. For k = —1,0,1, the k-th layer neighbors are edge
neighbors.

Reason:

e Union of totally disconnected closed sets is totally discon-
nected = some of the neighbors in the 0,1, —1-st layers
are edge neighbors.

e Neighbors in the O-th layer and 1, —1-st layers are of the
same type.

QED
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Proof of Theorem 3.

e F'ind bounding polygons for the tiles. Through trial and
error find P such that f;(P) C P.

e To see that there are at most 5 layers of neighbors, at
most 2 in each layer, use bounding polygons to separate
the non-neighbors.

e Use radix expansion to show that there are exactly 2 neigh-
bors in each of the 5 layers.

e To sce that the 2, -2nd-layers are vertex neighbors, repeat-
edly magnify the ¢-level approximations of 7" and 720~ 2(Irl.a),
The intersection of the magnified diagrams remains un-
changed. So the actual intersection is a point.
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FIGURE 18. A bounding polygon of the exceptional tile.



FIGURE 19. ‘Vertex neighbor’ proof.
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