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Annus Mirabilis papers

From Wikipedia, the free encyclopedia
  (Redirected from Annus Mirabilis Papers)

The Annus Mirabilis Papers (from Latin annus
m!r"bilis , 'extraordinary year') are the papers
of Albert Einstein published in the "Annalen der
Physik" scientific journal in 1905. These four
articles contributed substantially to the
foundation of modern physics and changed views
on space, time, and matter. The Annus Mirabilis
is often called the "Miracle Year" in English or

in German, the "Wunderjahr".[1]
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Einstein’s Annus Mirabilis 1905 papers:

• Matter and energy equivalence (E = mc2)
• Special relativity (Minkowski 1907)
• Photoelectric effect (Nobel prize in Physics 1921)
• Brownian motion



Brownian motion:
Thiele (1880), Bachelier (1900)
Einstein (1905), Smoluchowski (1906)
Wiener (1920’), Doob, Feller, Levy, Kolmogorov (1930’),
Doeblin, Dynkin, Hunt, Ito ...

Wiener process in R
n satisfies 1

n
E|Wt|2 = t and has a

Gaussian transition density:

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

distance ∼
√

time

“Einstein space–time relation for Brownian motion”



Gaussian transition density :

pt(x, y) =
1

(4πt)n/2
exp

(

−|x − y|2
4t

)

De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;
Li-Yau (1986) type estimates on a geodesically complete
Riemannian manifold with Ricci> 0:

pt(x, y) ∼ 1

V (x,
√

t)
exp

(

−c
d(x, y)2

t

)

distance ∼
√

time



Gaussian:

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

Li-Yau Gaussian-type:

pt(x, y) ∼
1

V (x,
√

t)
exp

(

−c
d(x, y)2

t

)

Sub-Gaussian:

pt(x, y) ∼
1

tdf /dw
exp

(

−c

(

d(x, y)dw

t

)

1

dw −1

)

distance ∼ (time)
1

dw



Brownian motion on R
d: E|Xt − X0| = ct1/2.

Anomalous diffusion: E|Xt−X0| = o(t1/2), or (in regular
enough situations),

E|Xt − X0| ≈ t1/dw

with dw > 2.

Here dw is the so-called walk dimension (should be called
“walk index” perhaps).

This phenomena was first observed by mathematical physicists
working in the transport properties of disordered media, such
as (critical) percolation clusters.



pt(x, y) ∼ 1

tdf /dw
exp

(

−c
d(x, y)

dw
dw −1

t
1

dw −1

)

distance ∼ (time)
1

dw

df = Hausdorff dimension

dw = “walk dimension”
2df

dw
= “spectral dimension”

First example: Sierpiński gasket; Kusuoka, Fukushima,
Kigami, Barlow, Bass, Perkins (mid 1980’—)



The Sierpinski gasket (left), and a typical
nested fractal, the Lindstrøm snowflake (right)



Existence and uniqueness of self-similar diffusions in finitely
ramified case can be reduced to a nonlinear eigenvalue prob-
lem: Sabot, Lindstrøm, Metz, Peirone.
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Simple examples: cut Sierpiński gaskets [Hambly,Metz,T]



Sierpiński carpet
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UNIQUENESS OF BROWNIAN MOTION ON SIERPINSKI
CARPETS

M. T. BARLOW1, R. F. BASS2, T. KUMAGAI3, A. TEPLYAEV4

Abstract. We prove that, up to scalar multiples, there exists
only one local regular Dirichlet form on a generalized Sierpinski
carpet that is invariant with respect to the local symmetries of
the carpet. Consequently for each such fractal the law of Brow-
nian motion is uniquely determined and the notion of Laplacian
is well defined.
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1. Introduction

Let F be a GSC and µ the usual Hausdorff measure on F . Let E be the set of non-
zero local regular conservative Dirichlet forms on L2(F, µ) which are invariant
with respect to all the local symmetries of F .

Theorem 1.1. Let F ⊂ R
d be a GSC. Then, up to scalar multiples, E

consists of at most one element. Further, this one element of E is self-similar.

Proposition 1.2. The Dirichlet forms constructed in [BB89, BB99] and
[KZ92] are in E.

Corollary 1.3. The Dirichlet forms constructed in [BB89, BB99] and [KZ92]
are (up to a constant) the same, and satisfy scale invariance (i.e. self-similar).

Corollary 1.4. If X is a continuous non-degenerate symmetric strong Markov
process, whose state space is F , and whose Dirichlet form is invariant with
respect to the local symmetries of F , then the law of X, which is a Feller
process, is uniquely defined, up to scalar multiples of the time parameter, for
each initial point x ∈ F .



We do not assume the heat kernel exists, or even that the semi-group is Feller,
or that the Dirichlet form is irreducible.

The idea of our proof is the following. The main work is showing that if A, B
are any two Dirichlet forms in E, then they are comparable. We then let λ be
the largest positive real such that C = A − λB ≥ 0. If C were also in E,
then C would be comparable to B, and so there would exist ε > 0 such that
C − εB ≥ 0, contradicting the definition of λ. In fact we cannot be sure that C
is closed, so instead we consider Cδ = (1 + δ)A − λB, which is easily seen to
be in E. We then need uniform estimates in δ to obtain a contradiction.

A key point here is that the constants in the Harnack inequality, and conse-
quently also the heat kernel bounds, only depend on the GSC F , and not on
the particular element of E. This means that we need to be careful about the
dependencies of the constants.



2. Preliminaries

2.1. Some general properties of Dirichlet forms.

Theorem 2.1. Suppose that (A, F), (B, F) are regular local conservative
irreducible Dirichlet forms on L2(F, m) and that

A(u, u) ≤ B(u, u) for all u ∈ F .

Let δ > 0, and E = (1+δ)B−A. Then (E, F) is a regular local conservative
irreducible Dirichlet form on L2(F, m).

Since E is local regular, E(f, f) can be written in terms of a measure Γ(f, f),
the energy measure of f , as follows. Let Fb be the elements of F that are
essentially bounded. If f ∈ Fb, Γ(f, f) is the unique smooth Borel measure on
F satisfying

∫

F
gdΓ(f, f) = 2E(f, fg) − E(f2, g), g ∈ Fb.

Lemma 2.2. If E is a local regular Dirichlet form with domain F , then for
any f ∈ F ∩ L∞(F ) we have Γ(f, f)(A) = 0, if A = {x∈F : f(x)=0}.



We call a function u : R+ × F → R caloric in D in probabilistic sense if
u(t, x) = E

x[f(Xt∧τD
)] for some bounded Borel f : F → R, which is the

solution to the heat equation with boundary data defined by f(x) outside
of D and the initial data defined by f(x) inside of D. Let T t be the semigroup
of X killed on exiting D, which can be either defined probabilistically as above or,
equivalently, in the Dirichlet form sense according to Theorems 4.4.3 and A.2.10
in [FOT].

Proposition 2.3. Let (E, F) and D satisfy the above conditions, and let
f ∈ F be bounded and t ≥ 0. Then

E
x[f(Xt∧τD

)] = h(x) + T tfD

q.e., where h(x) = E
x[f(XτD

)] is the harmonic function that consides with
f on Dc, and fD(x) = f(x) − h(x).



2.2. Generalized Sierpinski carpets. Let d ≥ 2, F0 = [0, 1]d, and let
LF ∈ N, LF ≥ 3, be fixed. For n ∈ Z let Qn be the collection of closed
cubes of side L

−n
F with vertices in L

−n
F Z

d. For A ⊆ R
d, set Qn(A) = {Q ∈

Qn : int(Q) ∩ A 6= ∅}. Let ΨQ be the orientation preserving affine map
from F0 onto Q. Let 1 ≤ mF ≤ Ld

F be an integer, and let F1 be the union
of mF distinct elements of Q1(F0).

• (H1) (Symmetry) F1 is preserved by the isometries of the unit cube F0.
• (H2) (Connectedness) Int(F1) is connected.
• (H3) (Non-diagonality) Let m ≥ 1 and B ⊂ F0 be a cube of side

length 2L
−m
F , which is the union of 2d distinct elements of Qm. Then if

int(F1 ∩ B) is non-empty, it is connected.
• (H4) (Borders included) F1 contains the line segment {x : 0 ≤ x1 ≤

1, x2 = ... = xd = 0}.

Given S ∈ Sn, f : S → R and g : F → R we define the unfolding and
restriction operators by USf = f ◦ ϕS, RSg = g|S, where ϕS : F → S.



Definition 2.4. We define the length and mass scale factors of F to be LF

and mF respectively. The Hausdorff dimension of F is df = df(F ) =
log mF/ log LF .

Let Dn be the network of diagonal crosswires obtained by joining each
vertex of a cube Q ∈ Qn to a vertex at the center of the cube by a wire
of unit resistance. Write RD

n for the resistance across two opposite faces of
Dn. There exists ρF and Ci, depending only on the dimension d, such that
ρF ≤ L2

F/mF and

C1ρ
n
F ≤ RD

n ≤ C2ρ
n
F .



2.3. F -invariant Dirichlet forms. Let (E, F) be a regular local Dirichlet
form on L2(F, µ). Let S ∈ Sn. We set

ES(g, g) =
1

mn
F

E(USg, USg).

and define the domain of ES to be FS = {g : g maps S to R, USg ∈ F}.

Definition 2.5. Let (E, F) be a Dirichlet form on L2(F, µ). We say that
E is invariant with respect to all the local symmetries of F (F -invariant or
E ∈ E) if

• (1) If S ∈ Sn(F ), then USRSf ∈ F for any f ∈ F .

• (2) Let n ≥ 0 and S1, S2 be any two elements of Sn, and let Φ
be any isometry of R

d which maps S1 onto S2. If f ∈ FS2 , then
f ◦ Φ ∈ FS1 and ES1(f ◦ Φ, f ◦ Φ) = ES2(f, f).

• (3) E(f, f) =
∑

S∈Sn(F)
ES(RSf, RSf) for all f ∈ F

Lemma 2.6. Let (A, F1), (B, F2) ∈ E with F1 = F2 and A ≥ B. Then
C = (1 + δ)A − B ∈ E for any δ > 0.



Θf =
1

mn
F

∑

S∈Sn(F)

USRSf.

Note that Θ is a projection operator because Θ2 = Θ. It is bounded on C(F )
and is an orthogonal projection on L2(F, µ).

Proposition 2.7. Assume that E is a local regular Dirichlet form on F , Tt

is its semigroup, and USRSf ∈ F whenever S ∈ Sn(F ) and f ∈ F . Then
the following, for all f, g ∈ F , are equivalent:

(a): E(f, f) =
∑

S∈Sn(F)

ES(RSf, RSf)

(b): E(Θf, g) = E(f, Θg) (c): TtΘf = ΘTtf



3. The Barlow-Bass and Kusuoka-Zhou Dirichlet forms

Theorem 3.1. Each EBB and EKZ is in E.

4. Diffusions associated with F -invariant Dirichlet forms

Let X = X(E) be an E-diffusion, Tt = T
(E)

t be the semigroup of X and
P

x = P
x,(E), x ∈ F −N0, the associated probability laws. Here N0 is a properly

exceptional set for X. Ultimately we will be able to define P
x for all x ∈ F , so

that N0 = ∅.

4.1. Reflected processes and Markov property.

Theorem 4.1. Let S ∈ Sn(F ). Let Z = ϕS(X). Then Z is a µS-
symmetric Markov process with Dirichlet form (ES, FS), and semigroup

T Z
t f = RSTtUSf . Write ˜P

y for the laws of Z; these are defined for
y ∈ S − N Z

2
, where N Z

2
is a properly exceptional set for Z. There exists a

properly exceptional set N2 for X such that for any Borel set A ⊂ F ,

˜P
ϕS(x)(Zt ∈ A) = P

x(Xt ∈ ϕ
−1

S (A)), x ∈ F − N2.



A0

A1

A′

1 s

v
∗

The half-face A1 corresponds to a “slide move”,
and the half-face A′

1
corresponds to a “corner move”,

analogues of the “corner” and “knight’s” moves in [BB89].







4.2. Moves by Z and X. The key idea, as in [BB99], is to prove that certain
‘moves’ of the process in F have probabilities which can be bounded below by
constants depending only on the dimension d. We begin by looking at the process
Z = ϕS(X) for some S ∈ Sn, where n ≥ 0.

Let 1 ≤ i, j ≤ d, with i 6= j, assume n = 0 and S = F , and

Hi(t) = {x = (x1, . . . , xd) : xi = t}, t ∈ R;

Li = Hi(0) ∩ [0, 1/2]d;

Mij = {x ∈ [0, 1]d : xi = 0, 1

2
≤ xj ≤ 1, and 0 ≤ xk ≤ 1

2
for k 6= j}.

∂eS = S ∩ (∪d
i=1

Hi(1)), D = S − ∂eS.

Proposition 4.2. There exists a constant q0, depending only on the dimen-
sion d, such that for any n ≥ 0

˜P
x(T Z

Lj
< τZ

D) ≥ q0, x ∈ Li ∩ ED,

˜P
x(T Z

Mij
< τZ

D) ≥ q0, x ∈ Li ∩ ED.



sy s

v
∗

D(y)

D1

D2



Define
FD1

= {f ∈ F : supp(f) ⊂ D1}
and denote by ED1

the associated Dirichlet form and by T D1

t the associated
semigroup, which are the Dirichlet form and the semigroup of the process X

killed on exiting D1, according to Theorems 4.4.3 and A.2.10 in [FOT].

Lemma 4.3. Let D1, D2 be as above.
(a) Let f ∈ FD1

. Then ΘD1f ∈ FD1
. Moreover, for all f, g ∈ FD1

we
have

ED1
(ΘD1f, g) = ED1

(f, ΘD1g)

and T D1

t ΘD1f = ΘD1T D1

t f .
(b) If h ∈ FD1

is harmonic (in the Dirichlet form sense) in D2 then ΘD1h

is harmonic (in the Dirichlet form sense) in D2.
(c) If u is caloric in D2, in the sense of Proposition 2.3, then ΘD1u is also
caloric in D2.

Lemma 4.4. We have for any bounded Borel function f : D1 → R and all
0 ≤ t ≤ ∞ that E

yf(Xt∧V |FZ
t∧V ) =

(

ΘD1f
)

(Zt∧V ).



Thus the conditional distribution of Xt given FZ
t∧τ is

k
∑

i=1

pi(t)δWi(t∧τ).

To describe the intuitive picture, we call the Wi “particles.” If Zt is in a lower
dimensional face, then there can be fewer than m distinct points Wi(t), because
some of them coincide and we can have Xt = Wi(t) = Wj(t) for i 6= j. We
call such a situation a “collision.”

Lemma 4.5. The processes pi(t) satisfy the following:
(a) If T is any (FZ

t ) stopping time satisfying T ≤ τ on {T < ∞} then
there exists δ(ω) > 0 such that

pi(T + h) = pi(T ) for 0 ≤ h < δ.

(b) Let T be any (FZ
t ) stopping time satisfying T ≤ τ on {T < ∞}. Then

for each i = 1, . . . k,

pi(T ) = lim
s→T−

Mi(T )−1
∑

j∈Ji(T)

pj(s),

where Mi(t) = Nn(Wi(t)) for 0 ≤ t < τ , which is the number of elements
of Sn that contain Wi(t).



Proposition 4.6. There exists a constant q1 > 0, depending only on d, such
that if x ∈ A0 ∩ ED and T0 ≤ τ is a finite (FZ

t ) stopping time, then

P
x(XT0

∈ S|FZ
T0

) ≥ q1.

Hence
P

x(T X
A1

≤ τ ) ≥ q0q1.



4.3. Properties of X.

Lemma 4.7. Let U ⊂ F be open and non-empty. Then P
x(TU < ∞) = 1,

q.e.

4.4. Coupling. We say that x, y ∈ F are m-associated if there exists an
isometry of a cube in Qm containing x onto a cube in Qm containing y that
maps x onto y; we write x∼my. It is easy to see that x∼my if and only if
ϕS(x) = ϕS(y) for each S ∈ Sm.

The coupling result we want is:

Proposition 4.8. Let x1, x2 ∈ F with x1 ∼n x2, where x1 ∈ S1 ∈ Sn(F ),
x2 ∈ S2 ∈ Sn(F ), and let Φ = ϕS1

|S2
. Then there exists a probability

space (Ω, F , P) carrying processes Xk, k = 1, 2 and Z with the following
properties.
(a) Each Xk is an E-diffusion started at xk.
(b) Z = ϕS2

(X2) = Φ ◦ ϕS1
(X1).

(c) X1 and X2 are conditionally independent given Z.



Given a pair of E-diffusions X1(t) and X2(t) we define the coupling time

TC(X1, X2) = inf{t ≥ 0 : X1(t) = X2(t)}.

Given Propositions 4.6 and 4.8 we can now use the same arguments as in
[BB99] to couple copies of X started at points x, y ∈ F , provided that x∼my

for some m ≥ 1.

Theorem 4.9. Let r > 0, ε > 0 and r′ = r/L2

F . There exist constants q3

and δ, depending only on the GSC F , such that the following hold:
(a) Suppose x1, x2 ∈ F with ||x1 − x2||∞ < r′ and x1∼mx2 for some
m ≥ 1. There exist E-diffusions Xi(t), i = 1, 2, with Xi(0) = xi, such
that, writing

τi = inf{t ≥ 0 : Xi(t) 6∈ B(x1, r)},

we have
P
(

TC(X1, X2) < τ1 ∧ τ2

)

> q3.

(b) If in addition ||x1 − x2||∞ < δr and x1∼mx2 for some m ≥ 1 then

P
(

TC(X1, X2) < τ1 ∧ τ2

)

> 1 − ε.



4.5. Elliptic Harnack inequality. X satisfies the elliptic Harnack inequality

if there exists a constant c1 such that the following holds: for any ball B(x, R),
whenever u is a non-negative harmonic function on B(x, R) then there is a
quasi-continuous modification ũ of u that satisfies

sup
B(x,R/2)

ũ ≤ c1 inf
B(x,R/2)

ũ.



Lemma 4.10. Let r ∈ (0, 1), and h be bounded and harmonic in B =
B(x0, r). Then there exists θ > 0 such that

|h(x) − h(y)| ≤ C
( |x − y|

r

)θ

(sup
B

|h|), x, y ∈ B(x0, r/2), x∼my.

Proposition 4.11. There exists a set N of E-capacity 0 such that the Lemma
above holds for all x, y ∈ B(x0, r/2) − N .

Proposition 4.12. EHI holds for E, with constants depending only on F .

Corollary 4.13. If E ∈ E then
(a) E is irreducible;
(b) if E(f, f) = 0 then f is a.e. constant;
(c) ||E|| > 0, where ||E|| is the effective resistance between two opposite
faces of the GSC.



4.6. Resistance estimates. Let now E ∈ E1. Let S ∈ Sn and let γn =
γn(E) be the conductance across S. That is, if S = Q ∩ F for Q ∈ Qn(F )
and Q = {ai ≤ xi ≤ bi, i = 1, . . . , d}, then

γn = inf{ES(u, u) : u ∈ FS, u |
{x1=a1}

= 0, u |
{x1=b1}

= 1}.

Note that γn does not depend on S, and that γ0 = 1. Write vn = vE

n for the
minimizing function. We remark that from the results in [BB3, McG] we have

C1ρ
n
F ≤ γn(EBB) ≤ C2ρ

n
F .

Proposition 4.14. Let E ∈ E1. Then for n, m ≥ 0

γn+m(E) ≥ C1γm(E)ρn
F .

We define a ‘time scale function’ H for E ...
We say E satisfies the condition RES(H, c1, c2) if for all x, r ∈ (0, L

−1

F ),

c1

H(r)

rα
≤ Reff(B(x0, r), B(x0, 2r)c) ≤ c2

H(r)

rα
. [RES(H, c1, c2)]

Proposition 4.15. There exist constants C1, C2, depending only on F , such
that E satisfies RES(H, C1, C2).



4.7. Exit times, heat kernel and energy estimates. We write h for the
inverse of H , and V (x, r) = µ(B(x, r)). We say that pt(x, y) satisfies
HK(H; η1, η2, c0) if for x, y ∈ F , 0 < t ≤ 1,

pt(x, y) ≥ c−1

0
V (x, h(t))−1 exp(−c0(H(d(x, y))/t)η1),

pt(x, y) ≤ c0V (x, h(t))−1 exp(−c−1

0
(H(d(x, y))/t)η2).

Theorem 4.16 (GT,BBKT). Let H : [0, 2] → [0, ∞) be a strictly increas-
ing function with H(1) ∈ (0, ∞) that satisfies ... Then TFAE:
(a) (E, F) satisfies (V D), (EHI) and (RES(H, c1, c2))
(b) (E, F) satisfies (HK(α, H; η1, η2, c0))
Further the constants in each implication are effective.

By saying that the constants are ‘effective’ we mean that if, for example (a)
holds, then the constants ηi, c0 in (b) depend only on the constants ci in (a),
and the constants in (VD), (EHI) and ...

Theorem 4.17.
X has a transition density pt(x, y) which satisfies HK(H; η1, η2, C), with
η1 = 1/(β0 − 1), η2 = 1/(β′ − 1) with the constants depending only on F .



Let

Jr(f) = r−α

∫

F

∫

B(x,r)

|f(x) − f(y)|2dµ(x)dµ(y),

Nr
H(f) = H(r)−1Jr(f),

NH(f) = sup
0<r≤1

Nr
H(f),

WH = {u ∈ L2(F, µ) : NH(f) < ∞}.

Theorem 4.18 (KS,BBKT). Let H satisfy ... Suppose pt satisfies
HK(H, η1, η2, C0). Then

C1E(f, f) ≤ lim sup
j→∞

N
rj

H (f) ≤ NH(f) ≤ C2E(f, f) for all f ∈ WH,

where the constants Ci depend only on the constants in HK(H; η1, η2, C),
and in ... Further,

F = WH.



Theorem 4.19. Let (E, F) ∈ E1.
(a) There exist constants C1, C2 > 0 such that for all r ∈ [0, 1],

C1H0(r) ≤ H(r) ≤ C2H0(r), H0(r) = rβ0.

(b) WH = WH0
, and there exist constants C3, C4 such that

C3NH0
(f) ≤ E(f, f) ≤ C4NH0

(f) for all f ∈ WH.

(c) F = WH0
= F0.

Remark 4.20. pt(x, y) satisfies HK(H0, η1, η1, C) with η1 = 1/(β0 − 1).



5. Uniqueness

Definition 5.1. Let A, B ∈ E. We say A ≤ B if

B(u, u) − A(u, u) ≥ 0 for all u ∈ W.

For A, B ∈ E define

sup(B|A) = sup

{ B(f, f)

A(f, f)
: f ∈ W

}

,

h(A, B) = log

(

sup(B|A)

sup(A|B)

)

.

Note that h is Hilbert’s projective metric and we have h(θA, B) = h(A, B)
for any θ ∈ (0, ∞), and h(A, B) = 0 if and only if A is a nonzero constant
multiple of B.

Theorem 5.2. There exists a constant CF , depending only on the GSC F ,
such that if A, B ∈ E then

h(A, B) ≤ CF .



Acknowledgment. The authors thank Z.Q. Chen, M. Fukushima, M. Hino,
V. Metz, and M. Takeda for valuable discussions.

M.T. Barlow,
Department of Mathematics University of British Columbia Vancouver B.C.
Canada V6T 1Z2, barlow@math.ubc.ca

R.F. Bass,
Department of Mathematics, University of Connecticut, Storrs CT 06269 USA,
bass@math.uconn.edu

T. Kumagai,
Department of Mathematics, Faculty of Science Kyoto University, Kyoto 606-8502,
Japan, kumagai@math.kyoto-u.ac.jp

A. Teplyaev,
Department of Mathematics, University of Connecticut, Storrs CT 06269 USA,
teplyaev@math.uconn.edu


	talk-Strobl-2009-A
	talk-Strobl-2009-B
	talk-Strobl-2009-C-ref
	talk-Strobl-2009-D



