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1. Lipschitz-Killing curvatures of sets with positive reach

Differential geometry:
integrals of k th mean curvatures of a d-dimensional submanifold
Md ⊂ Rd with smooth boundary:

Ck(Md) :=
∫

∂Md

Sd−1−k(κ1, . . . , κd−1) dHd−1

k th Lipschitz-Killing curvature, k = 0, . . . , d− 1, where

Sl((κ1, . . . , κd−1) := const(d, l)
∑

1≤i1...≤il≤d−1

κ1 . . . κl

l th symmetric function of principal curvatures κ1, . . . , κd−1

Special cases: k = 0 total Gauss curvature = Euler characteristic,
k = d− 2 total mean curvature, k = d− 1 surface area, define
additionally for k = d: Cd(Md) := Ld(Md) volume

Convex geometry:
V k(K) k th intrinsic volume of a convex body K; for smooth boundary

V k(K) = Ck(∂K)
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Geometric measure theory (extension of both approaches):

integrals of k th generalized mean curvatures over the unit normal bundle
norMd of a d-dimensional submanifold Md ⊂ Rd with positive reach
(unique foot point property)

Ck(Md) :=
∫

norMd

Sd−1−k(κ1, . . . , κd−1) dHd−1

k th Lipschitz-Killing curvature, k = 0, . . . , d− 1, where

Sl((κ1, . . . , κd−1) := const(d, l)
∑

1≤i1...≤il≤d−1

κ1 . . . κl

l th symmetric function of generalized principal curvatures κ1, . . . , κd−1

Curvature measures: [Federer 1959], explicit representation [Z. 1986]
Additive extension to unions of sets with positive reach: [Z.1987], [Rataj,
Z. 2001]
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For ε > 0 and A ⊂ Rd denote

Aε := {x ∈ Rd : d(x, A) ≤ ε} .

Theorem (Fu 1985)
For any compact K ⊂ Rd with d ≤ 3, Lebesgue-a.e. ε > 0 is a regular
value of the distance function of K and, hence, the closure of the
complement of the the parallel set Kε has positive reach.

For arbitrary d and compact K with this property define the k th
Lipschitz-Killing curvature of the parallel sets Kε for those ε by

Ck(Kε) := (−1)d−kCk

(
(Kε)c

)
(consistent definition).

For classical sets K as above we have

lim
ε→0

Ck(Kε) = Ck(K) ,

for fractal sets explosion. Therefore rescaling is necessary:
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2. Fractal curvatures - approximation by close neighborhoods

F self-similar set in Rd with Hausdorff dimension D satisfying OSC

Winter [Thesis 06, printed version 08]: Under the additional assumption
of polyconvex neighborhoods Fε the following limits exist:

Ck(F ) := lim
ε→0

εD−kCk(Fε)

in the ”non-arithmetic case” and generally,

Ck(F ) := lim
δ→0

1
| ln δ|

∫ 1

δ

εD−kCk(Fε)
1
ε

dε .

(Integral representation for Ck(F ) which admits some explicit or
numerical calculations.)
New system of geometric parameters, allows to distinguish
self-similar fractals with equal Hausdorff dimension, but different
geometric features.
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Measure version (Winter):

Ck(F, ·) : = (w) lim
δ→0

1
| ln δ|

∫ 1

δ

εD−kCk(Fε, ·)
1
ε

dε (1)

= Ck(F )HD(F )−1HD(F ∩ (·)) . (2)

Extensions
Z.: non-polyconvex neighborhoods, random self-similar sets (results for
total curvatures)
Winter/Z. (in preparation): measure version in the deterministic
non-polyconvex case

Interpretation of HD(F )−1Ck(F ): some fractal analogue of the
pointwise mean curvatures on smooth submanifolds
here: constant values because of self-similarity

Interpretation as curvature densities:
(allows to consider more general types of (random) fractals, applications
to random fractal tessellations)
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3. Average curvature densities

Let O be from (OSC), SO :=
⋃N

i=1 SiO for the generating similarities
S1, . . . , SN with contraction rations r1, . . . , rN .

For 0 < ε < ε0 and x ∈ F let AF (x, ε) be a family of sets of such that
AF (x, ε) ⊂ Fε ∩B(x, aε) for some a > 1 and

Si(AF (x, ε)) = ASi(F )(Si(x), riε) , i = 1, . . . , N .

Examples:

1. AF (x, ε) = Fε ∩B(x, aε)
2. AF (x, ε) = Fε ∩Π−1

F

(
B(x, ε)

)
,

the set of those points from Fε which have a foot point on F within
the ball B(x, ε)

3. AF (x, ε) = {y ∈ Fε : |y − x| < %F (y, ε)},
where %F (y, ε) is determined by HD

(
F ∩B(y, %F (y, ε))

)
= εD
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Main result:

For HD-a.a. x ∈ F the following limit exists

lim
δ→0

1
| ln δ|

∫ 1

δ

ε−kCk

(
Fε, AF (x, ε)

) 1
ε

dε

and equals the constant

HD(F )−1
( N∑

i=1

rD
i ln ri

)−1
∫

F

∫ d(y,Oc)
2a

d(y,(SO)c)
2a

ε−kCk

(
Fε, AF (y, ε)

) 1
ε

dεHD(dy)

provided the last integral converges.
The limit agrees with the former local variant HD(F )−1Ck(F ) if the
total fractal curvature Ck(F ) exists and the sets AF (x, ε) are chosen as
in Example 3. (k = 0, . . . , d.)

Heuristic interpretation:
Example 3 corresponds to D-dimensional Minkowski content and
Example 2 to D-dimensional Hausdorff measure on F (for k = d this is
exact).
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