The duality in the affine action on trees

levgen Bondarenko (joint work with Dmytro Savchuk)

Kyiv University

February 11, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Groups acting on trees:

- Action of algebraic groups over local fields on their Bruhat-Tits trees
- Action on rooted trees given by Mealy automata (Burnside groups, groups of intermediate growth, ...)
- Groups acting on the product of two trees (non-residually finite CAT(0) groups, finitely presented torsion-free simple groups, ...)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We consider complete deterministic Mealy automata.

A finite **automaton** is a quadruple $A = (S, X, \tau, \pi)$, where

- X is a finite set (the input and output alphabet),
- S is a finite set (the set of states),
- $\tau: S \times X \to S$ is the transition map,
- $\pi: S \times X \to X$ is the output map.

An automaton can be identified with a **finite directed labeled graph** with vertices S and arrows

$$s \xrightarrow{ imes | y } t$$
 iff $\pi(s,x) = y$ and $au(s,x) = t$.

Let X^* be the space of finite words over X. For every state $s \in S$, the automaton A initialized at s produces the transformation $A_s : X^* \to X^*$:

$$A_s(x_1x_2\ldots x_n)=y_1y_2\ldots y_n$$

for a path (s) $\xrightarrow{x_1|y_1} \bigcirc \xrightarrow{x_2|y_2} \bigcirc \dots \bigcirc \xrightarrow{x_n|y_n} \bigcirc$.

If all A_s are invertible, they generate an **automaton group** G_A . A given group is an automaton group iff there is an automaton structure on the group.

The space X^* has a natural tree structure. Every automaton group acts by automorphisms on this tree.

Dual automata

 $(S, X, \tau, \pi) \rightsquigarrow$ automaton A over X with states S $(X, S, \tau, \pi) \rightsquigarrow$ **dual automaton** ∂A over S with states X

$$s \xrightarrow{x|y} t$$
 in A iff $x \xrightarrow{s|t} y$ in ∂A

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Automata A and $\partial A \rightsquigarrow$ two actions $S \curvearrowright X^*$ and $S^* \curvearrowleft X$.

Basic question: What is the relation between these two actions? What is the relation between G_A and $G_{\partial A}$?

Easy: G_A is finite iff $G_{\partial A}$ is finite

Automata A and $\partial A \rightsquigarrow$ two actions $S \curvearrowright X^*$ and $S^* \curvearrowleft X$.

Basic question: What is the relation between these two actions? What is the relation between G_A and $G_{\partial A}$?

Easy: G_A is finite iff $G_{\partial A}$ is finite

Connection with Schreier graphs: The states of $A^{(n)} = A \circ ... \circ A$ form a sphere in G_A . The $(\partial A)^{(n)}$ is the **Schreier graph** $\Gamma_n = \Gamma(G_A, X^n)$.

Bireversible automata

There are two standard operations with automata:

taking inverse: if $s \xrightarrow{x|y} t$ in A, then $s^{-1} \xrightarrow{y|x} t^{-1}$ in $\iota(A)$ taking dual: if $s \xrightarrow{x|y} t$ in A, then $x \xrightarrow{s|t} y$ in $\partial(A)$

A is invertible iff i(A) is well-defined $\partial(A)$ is invertible iff $i\partial(A)$ is well-defined

2000 Macedonska, Nekrashevych, Sushchansky: An automaton A is called **bireversible** if all eight automata

 $A, \ \partial(A), \ \imath(A), \ \imath\partial(A), \ \partial\imath(A), \ \partial\imath\partial(A), \ \imath\partial\imath(A), \ \imath\partial\imath(A) = \partial\imath\partial\imath(A)$

are well-defined (deterministic and complete).

Aleshin and Bellaterra automata

Aleshin and Bellaterra automata are the only bireversile automata with 3 states over 2 letters generating infinite automaton groups.

Aleshin automaton

Bellaterra automaton

Vorobets²:

$$egin{array}{lll} G_A = F_3 ext{ free group} \ G_{\partial A} = (\mathbb{Z}_2 imes \mathbb{Z}_2) *_{\mathbb{Z}_2} S_3 \end{array}$$

Muntyan, Nekrashevych, Savchuk:

$$G_B = C_2 * C_2 * C_2$$

One more example

・ロト・日本・モート モー うへぐ

Bondarenko-Kivva: $A \cong \partial(A) \cong i(A)$ and $G_A = F_2$.

Infinitely presented example

Bondarenko-D'Angeli-Rodaro: $A \cong \partial A \cong i(A)$ and $G_A = \mathbb{Z}_3 \wr \mathbb{Z}$

・ロト・「聞ト・(問ト・(問ト・(日下)

Algebraic object behind duality

We can associate a f.p. group with an automaton $A = (S, X, \tau, \pi)$:

$$\Gamma_A = \langle S, X \mid sx = yt \text{ for each arrow } s \xrightarrow{x \mid y} t \text{ in } A \rangle.$$

certain relations in $\Gamma_A \leftrightarrow$ transitions in A

 $s_1x_1x_2x_3 = y_1y_2y_3s_4 \quad \leftrightarrow \quad s_1 \xrightarrow{x_1|y_1} s_2 \xrightarrow{x_2|y_2} s_3 \xrightarrow{x_3|y_3} s_4$

A is well-defined: $SX \subset XS$ in Γ_A . $\iota(A)$ is well-defined: $S^{\pm 1}X \subset XS^{\pm 1}$ in Γ_A . Bireversibility: $S^{\pm 1}X^{\pm 1} = X^{\pm 1}S^{\pm 1}$ in Γ_A . Therefore, we have group factorization

 $\Gamma_A = \langle S \rangle \cdot \langle X \rangle$

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ の へ ()・

2005 Glasner-Mozes: automata vs square complexes

$$\Delta_{\mathsf{A}} = \left\{ \begin{array}{c} s \xrightarrow{x} t & \text{for each arrow } s \xrightarrow{x|y} t & \text{in } \mathsf{A} \end{array} \right\}.$$

The complex Δ_A is a directed VH square complex with one vertex.

$$\pi_1(\Delta_{\mathsf{A}}) = \langle S, X \mid sx = yt \; \; ext{for each arrow} \; s \stackrel{ imes y}{\longrightarrow} t \; ext{in } \mathsf{A}
angle.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Proposition (Follows from Wise, Burger-Mozes, Glasner-Mozes)

Let A be a finite automaton. The following statements are equivalent:

- A is bireversible;
- 2-cells of Δ_A form a 4-way deterministic tileset;
- \bigcirc the link of a unique vertex of Δ_A is a complete bipartite graph;

- Δ_A is non-positively curved;
- **(**) the universal cover of Δ_A is a direct product of two trees.

Bireversible property: $S^{\pm 1}X^{\pm 1} = X^{\pm 1}S^{\pm 1}$ in $\pi_1(\Delta_A)$.

Proposition (Follows from Bridson-Wise)

Let A be a bireversible automaton. Then:

- $\pi_1(\Delta_A)$ is a torsion-free CAT(0) group.
- 2 The subgroups $\langle S \rangle$ and $\langle X \rangle$ of $\pi_1(\Delta_A)$ are free groups.

③ $\pi_1(\Delta_A)$ has exact factorization by $\langle S \rangle$ and $\langle X \rangle$.

Every element $\gamma \in \pi_1(\Delta_A)$ can be uniquely written in the **normal** forms $\gamma = gv$ and $\gamma = uh$ for $g, h \in \langle S \rangle$ and $v, u \in \langle X \rangle$. The correspondence between these two normal forms is given by the automaton A^* :

 $gv = uh \text{ in } \pi_1(\Delta_A) \quad \text{ if and only if } g \xrightarrow{v|u} h \text{ in } A^*.$

Proposition (Bondarenko-Kivva)

Let A be a bireversible automaton. Then

$$G_A \cong F_S/K$$
 and $G_{\partial A} \cong F_X/K_{\partial}$,

where K and K_{∂} are the maximal normal subgroups of $\pi_1(\Delta_A)$ that are contained in $F_S = \langle S \rangle$ and $F_X = \langle X \rangle$ respectively.

 G_A , $G_{\partial A}$ are finite iff $\pi_1(\Delta_A)$ is virtually $F_n \times F_m$ (reducible lattice in the product of two trees)

 $\pi_1(\Delta_A)$ is just-infinite $\Rightarrow G_A$ and $G_{\partial A}$ are free groups

Question: What is the relation between G_A and $G_{\partial A}$?

The transition group: $T_A = \pi_1(\Delta_A)/K \times K_\partial = G_A \cdot G_{\partial A}$.

Aleshin automaton and Wise's example

2017 Bondarenko-Kivva: $\pi_1(\Delta_A)$ is non-residually finite

Let F be a finite field, F(t) rational function field, F[[t]] formal power series ring.

The polynomial ring F[t] has a natural structure of a regular rooted tree with boundary F[[t]], given by the sequence of ideals

$$(1) \supset (t) \supset (t^2) \supset (t^3) \supset \ldots$$

The affine group

$$\operatorname{Aff}(F[[t]]) = \{\pi_{a,b} : x \mapsto ax + b, \ a \in F[[t]]^*, b \in F[[t]]\}$$

acts on this tree by automorphisms (self-similar group).

Then:
$$\operatorname{Aff}(F[[t]]) \cap \mathsf{FAut}(\mathsf{F}[t]) = \operatorname{Aff}(F(t) \cap F[[t]])$$

Example: the lamplighter group

Let
$$f(t) = 1 + t \in \mathbb{F}_2[t]$$
. Then
 $\pi_{1+t,0}(0 + a_1t + ...) = 0 + t[(1 + t)(a_1 + a_2t + ...)]$
 $\pi_{1+t,0}(1 + a_1t + ...) = 1 + t[(1 + t)(a_1 + a_2t + ...) + 1]$
 $\pi_{1+t,1}(0 + a_1t + ...) = 1 + t[(1 + t)(a_1 + a_2t + ...)]$
 $\pi_{1+t,1}(1 + a_1t + ...) = 0 + t[(1 + t)(a_1 + a_2t + ...) + 1]$

$$G_{A_f} = \langle \pi_{1+t,0}, \pi_{1+t,1} \rangle$$

= $\mathbb{F}_2[(1+t)^{\pm 1}] \rtimes \langle 1+t \rangle$
= $\mathbb{Z}_2 \wr \mathbb{Z}$,

the lamplighter group

A_f is **not bireversible**

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

History

2005 Silva-Steinberg: consider H[[t]] for a finite abelian H, $f(t) = 1 - t \in H[[t]]$, $G_{A_f} = H \wr \mathbb{Z}$

2006 Bartholdi-Sunik:

- ▶ polynomials over $\mathbb{Z}/n\mathbb{Z}$, $G_A = (\mathbb{Z}/n\mathbb{Z})^d \wr \mathbb{Z}$
- ▶ the ring Z_n of n-adic integer, multiplication by m, G_A is the Baumslag-Solitar group B(1, m)

2006 Bartholdi-Neuhauser-Woess: consider a finite commutative ring R, $I_i \in R$ satisfying certain conditions, an automaton group

$$\Gamma_d(R) = R[(t + l_1)^{-1}, \dots, (t + l_{d-1})^{-1}, t] \rtimes \langle t + l_1, \dots, t + l_{d-1} \rangle$$

2017 Skipper-Witzel-Zaremsky: for every *n* a simple group of type F_{n-1} but not of type F_n

Let $f(t) = \frac{1+t+t^2}{1+t^2} \in \mathbb{F}_2(t)$. Then A_f is bireversible and $G_{A_f} = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}$ and $G_{\partial A_f} = \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The automaton A_f

Let
$$f(t) = \frac{p(t)}{q(t)} \in F(t)$$
 be non-constant. We assume
 $(q(t), t) = 1 \implies f \in F[[t]] \text{ and } \pi_{f,0} \curvearrowright F[[t]]$
 $(p(t), t) = 1 \implies f^{-1} \in F[[t]] \text{ and } \pi_{f,0} \text{ is invertible}$

Let A_f be the automaton for $\pi_{f,0}$. The states of A_f are $\pi_{f,b}$ for $b \in B$, where B is a finite additive subgroup of F(t).

Proposition

1) A_f is bireversible iff deg $p(t) = \deg q(t)$ 2) $G_{A_f} = B[f, f^{-1}] \rtimes \langle f \rangle \cong (\mathbb{Z}/p\mathbb{Z})^m \wr \mathbb{Z}$ for some $m \ge 1$

Question: What is the dual action?

$$\partial A_f \stackrel{?}{=} A_{g?}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix $g(t) \in F(t)$. The field extension $F(t) \supset F(g(t))$ is finite of degree $d = \deg g(t)$, here $1, t, \ldots, t^{d-1}$ is a basis. Then every $f(t) \in F(t)$ can be written as

$$egin{aligned} f(t) &= r_0(g(t)) + t \cdot r_1(g(t)) + \ldots + t^{d-1} r_{d-1}(g(t)) = \ &= \sum_{n \geqslant -k} a_n(t) g^n(t), ext{ where } a_n(t) \in \mathcal{F}_{< d}[t]. \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix $g(t) \in F(t)$. The field extension $F(t) \supset F(g(t))$ is finite of degree $d = \deg g(t)$, here $1, t, \ldots, t^{d-1}$ is a basis. Then every $f(t) \in F(t)$ can be written as

$$f(t) = r_0(g(t)) + t \cdot r_1(g(t)) + \ldots + t^{d-1}r_{d-1}(g(t)) =$$

= $\sum_{n \ge -k} a_n(t)g^n(t)$, where $a_n(t) \in F_{< d}[t]$.

 $R_g = \{f(t) \in F(t) : f(t) = \sum_{n \ge 0} a_n(t)g^n(t)\} \text{ is a subring of } F(t).$ We can consider **the action of Aff**(R_g) **on the tree** T_g given by the ideals $(g^n(t)), n \ge 0$. Let $f(t) = \frac{p_1(t)}{q_1(t)}$, $g(t) = \frac{p_2(t)}{q_2(t)} \in F(t)$ be such that $f(t) \in R_g$. We can consider the action of f(t) on the tree T_g by multiplication. Let $A_{(f,g)}$ be the corresponding automaton.

If g(t) = t then $A_{(f,g)} = A_f$ is just standard automaton for f(t).

Theorem

1) $A_{(f,g)}$ is bireversible if and only if p_1, p_2, q_1, q_2 are pairwise coprime and either deg $p_1(t) = \deg q_1(t)$ or deg $p_2(t) = \deg q_2(t)$. 2) $G_{A_{(f,g)}}$ is a lamplighter group.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $f(t) = \frac{p_1(t)}{q_1(t)}$, $g(t) = \frac{p_2(t)}{q_2(t)} \in F(t)$ be such that $f(t) \in R_g$. We can consider the action of f(t) on the tree T_g by multiplication. Let $A_{(f,g)}$ be the corresponding automaton.

If g(t) = t then $A_{(f,g)} = A_f$ is just standard automaton for f(t).

Theorem

1) $A_{(f,g)}$ is bireversible if and only if p_1, p_2, q_1, q_2 are pairwise coprime and either deg $p_1(t) = \deg q_1(t)$ or deg $p_2(t) = \deg q_2(t)$. 2) $G_{A_{(f,g)}}$ is a lamplighter group.

Inverse & Dual:
$$i(A_{(f,g)}) = A_{(f^{-1},g)}$$
 and $\partial(A_{(f,g)}) = A_{(g^{-1},f^{-1})}$

Eight automata correspond to the pairs $(f^{\pm 1}, g^{\pm 1})$ and $(g^{\pm 1}, f^{\pm 1})$.

Transition group of $A_{(f,g)}$

Let $f(t), g(t) \in F(t)$ and consider two subsets of $\operatorname{Aff}(F(t))$: $X_f = \{\pi_{f,a}, a \in S_f\}$ and $X_g = \{\pi_{g,b}, b \in S_g\},$ where $S_{\frac{p(t)}{q(t)}} = \{a(t)/q(t) : a(t) \in F[t], \deg a(t) < \deg \frac{p(t)}{q(t)}\}.$

The automaton $A_{(f,g)}$ has the states X_f over the alphabet X_g ,

$$\pi_{f,a} \xrightarrow{\pi_{g,b}|\pi_{g,b'}} \pi_{f,a'} \quad \text{iff} \quad \pi_{f,a} \circ \pi_{g,b} = \pi_{g,b'} \circ \pi_{f,a'}.$$

Transition group of $A_{(f,g)}$

Let $f(t), g(t) \in F(t)$ and consider two subsets of $\operatorname{Aff}(F(t))$: $X_f = \{\pi_{f,a}, a \in S_f\}$ and $X_g = \{\pi_{g,b}, b \in S_g\},$ where $S_{\frac{p(t)}{q(t)}} = \{a(t)/q(t) : a(t) \in F[t], \deg a(t) < \deg \frac{p(t)}{q(t)}\}.$

The automaton $A_{(f,g)}$ has the states X_f over the alphabet X_g ,

$$\pi_{f,a} \xrightarrow{\pi_{g,b}|\pi_{g,b'}} \pi_{f,a'} \quad \text{iff} \quad \pi_{f,a} \circ \pi_{g,b} = \pi_{g,b'} \circ \pi_{f,a'}.$$

Then

$$G_{A} = \langle X_{f} \rangle = S_{f}[f, f^{-1}] \rtimes \langle f \rangle$$
$$G_{\partial A} = \langle X_{g} \rangle = S_{g}[g, g^{-1}] \rtimes \langle g \rangle$$
$$T(A_{(f,g)}) = \langle X_{f}, X_{g} \rangle = \langle X_{f} \rangle \langle X_{g} \rangle = G_{A} \cdot G_{\partial A}$$
$$= (S_{f}[f, f^{-1}] + S_{g}[g, g^{-1}]) \rtimes \langle f, g \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let S be a finite set of places of F(t) and \mathcal{O}_S the ring of S-integers of F(t). We can find $g(t) \in F(t)$ such that

 $\mathcal{O}_{\mathcal{S}} \cap S_{g}[g, g^{-1}] = \{0\} \quad \Rightarrow \quad \operatorname{Aff}(\mathcal{O}_{\mathcal{S}}) \cap \operatorname{Aff}(S_{g}[g, g^{-1}]) = \{id\}$

Theorem

The group $Aff(\mathcal{O}_S)$ can be realized by a bireversible automaton

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary: Bireversible automata A such that G_A is finitely presented, while $G_{\partial A}$ is not.

Corollary: A basic construction of

- a family of bireversible automata
- irreducible lattices in the product of two trees

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- non-residually finite CAT(0) groups
- directed VH square complexes

Question: What is the nature of $\pi_1(\Delta_{A_{(f,g)}})$?

Corollary: A basic construction of

- a family of bireversible automata
- irreducible lattices in the product of two trees
- non-residually finite CAT(0) groups
- directed VH square complexes

Question: What is the nature of $\pi_1(\Delta_{A_{(f,g)}})$?

Conjecture: Groups generated by bireversible automata are linear

Thank You for attention!