The duality in the affine action on trees

levgen Bondarenko
(joint work with Dmytro Savchuk)

Kyiv University

February 11, 2019

Groups acting on trees

Groups acting on trees:

- Action of algebraic groups over local fields on their Bruhat-Tits trees
- Action on rooted trees given by Mealy automata (Burnside groups, groups of intermediate growth, ...)
- Groups acting on the product of two trees (non-residually finite CAT(0) groups, finitely presented torsion-free simple groups, ...)

Automata-transducers

We consider complete deterministic Mealy automata.
A finite automaton is a quadruple $A=(S, X, \tau, \pi)$, where

- X is a finite set (the input and output alphabet),
- S is a finite set (the set of states),
- $\tau: S \times X \rightarrow S$ is the transition map,
- $\pi: S \times X \rightarrow X$ is the output map.

An automaton can be identified with a finite directed labeled graph with vertices S and arrows
$s \xrightarrow{x \mid y} t$ iff $\pi(s, x)=y$ and $\tau(s, x)=t$.

Automaton action on a tree

Let X^{*} be the space of finite words over X. For every state $s \in S$, the automaton A initialized at s produces the transformation $A_{s}: X^{*} \rightarrow X^{*}:$

$$
A_{s}\left(x_{1} x_{2} \ldots x_{n}\right)=y_{1} y_{2} \ldots y_{n}
$$

for a path $\subseteq \bigcirc \xrightarrow{x_{1} \mid y_{1}} \bigcirc \xrightarrow{x_{2} \mid y_{2}} \bigcirc \ldots \bigcirc \xrightarrow{x_{n} \mid y_{n}} \bigcirc$.

If all A_{s} are invertible, they generate an automaton group G_{A}. A given group is an automaton group iff there is an automaton structure on the group.

The space X^{*} has a natural tree structure. Every automaton group acts by automorphisms on this tree.
$(S, X, \tau, \pi) \rightsquigarrow$ automaton A over X with states S
$(X, S, \tau, \pi) \rightsquigarrow$ dual automaton ∂A over S with states X

$$
s \xrightarrow{x \mid y} t \text { in } A \quad \text { iff } \quad x \xrightarrow{s \mid t} y \text { in } \partial A
$$

Automata A and $\partial A \rightsquigarrow$ two actions $S \curvearrowright X^{*}$ and $S^{*} \curvearrowleft X$.

Basic question: What is the relation between these two actions?
What is the relation between G_{A} and $G_{\partial A}$?

Easy: G_{A} is finite iff $G_{\partial A}$ is finite

Automata A and $\partial A \rightsquigarrow$ two actions $S \curvearrowright X^{*}$ and $S^{*} \curvearrowleft X$.

Basic question: What is the relation between these two actions? What is the relation between G_{A} and $G_{\partial A}$?

Easy: G_{A} is finite iff $G_{\partial A}$ is finite

Connection with Schreier graphs:
The states of $A^{(n)}=A \circ \ldots \circ A$ form a sphere in G_{A}.
The $(\partial A)^{(n)}$ is the Schreier graph $\Gamma_{n}=\Gamma\left(G_{A}, X^{n}\right)$.

There are two standard operations with automata:

$$
\begin{array}{ll}
\text { taking inverse: } & \text { if } s \xrightarrow{x \mid y} t \text { in } A, \text { then } s^{-1} \xrightarrow{y \mid x} t^{-1} \text { in } \imath(A) \\
\text { taking dual: } & \text { if } s \xrightarrow{x \mid y} t \text { in } A \text {, then } x \xrightarrow{s \mid t} y \text { in } \partial(A)
\end{array}
$$

A is invertible iff $\imath(A)$ is well-defined $\partial(A)$ is invertible iff $\imath \partial(A)$ is well-defined

2000 Macedonska, Nekrashevych, Sushchansky: An automaton A is called bireversible if all eight automata
$A, \partial(A), \imath(A), \imath \partial(A), \partial \imath(A), \partial \imath \partial(A), \imath \partial \imath(A), \imath \partial \imath \partial(A)=\partial \imath \partial \imath(A)$
are well-defined (deterministic and complete).

Aleshin and Bellaterra automata

Aleshin and Bellaterra automata are the only bireversile automata with 3 states over 2 letters generating infinite automaton groups.

Aleshin automaton

Bellaterra automaton

Vorobets ${ }^{2}$:

$$
\begin{aligned}
& G_{A}=F_{3} \text { free group } \\
& G_{\partial A}=\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) *_{\mathbb{Z}_{2}} S_{3}
\end{aligned}
$$

Muntyan,Nekrashevych,Savchuk:

$$
G_{B}=C_{2} * C_{2} * C_{2}
$$

Bondarenko-Kivva: $A \cong \partial(A) \cong \imath(A)$ and $G_{A}=F_{2}$.

Infinitely presented example

Bondarenko-D'Angeli-Rodaro: $A \cong \partial A \cong \imath(A)$ and $G_{A}=\mathbb{Z}_{3} \imath \mathbb{Z}$

Algebraic object behind duality

We can associate a f.p. group with an automaton $A=(S, X, \tau, \pi)$:

$$
\left.\Gamma_{A}=\langle S, X| s x=y t \text { for each arrow } s \xrightarrow{x \mid y} t \text { in } A\right\rangle .
$$

certain relations in $\Gamma_{A} \leftrightarrow$ transitions in A

$$
s_{1} x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3} s_{4} \quad \leftrightarrow \quad s_{1} \xrightarrow{x_{1} \mid y_{1}} s_{2} \xrightarrow{x_{2} \mid y_{2}} s_{3} \xrightarrow{x_{3} \mid y_{3}} s_{4}
$$

A is well-defined: $S X \subset X S$ in Γ_{A}.
$\imath(A)$ is well-defined: $S^{ \pm 1} X \subset X S^{ \pm 1}$ in Γ_{A}.
Bireversibility: $S^{ \pm 1} X^{ \pm 1}=X^{ \pm 1} S^{ \pm 1}$ in Γ_{A}. Therefore, we have group factorization

$$
\Gamma_{A}=\langle S\rangle \cdot\langle X\rangle
$$

Connection with square complexes

2005 Glasner-Mozes: automata vs square complexes

The complex Δ_{A} is a directed VH square complex with one vertex.

$$
\left.\pi_{1}\left(\Delta_{\mathrm{A}}\right)=\langle S, X| s X=y t \text { for each arrow } s \xrightarrow{x \mid y} t \text { in } \mathrm{A}\right\rangle .
$$

Characterizations of bireversibility

Proposition (Follows from Wise, Burger-Mozes, Glasner-Mozes)

Let A be a finite automaton. The following statements are equivalent:
(1) A is bireversible;
(2) 2-cells of Δ_{A} form a 4-way deterministic tileset;
(3) the link of a unique vertex of Δ_{A} is a complete bipartite graph;
(3) Δ_{A} is non-positively curved;
(3) the universal cover of Δ_{A} is a direct product of two trees.

Properties of $\pi_{1}\left(\Delta_{\mathrm{A}}\right)$

Bireversible property: $S^{ \pm 1} X^{ \pm 1}=X^{ \pm 1} S^{ \pm 1}$ in $\pi_{1}\left(\Delta_{\mathrm{A}}\right)$.

Proposition (Follows from Bridson-Wise)

Let A be a bireversible automaton. Then:
(1) $\pi_{1}\left(\Delta_{\mathrm{A}}\right)$ is a torsion-free $\operatorname{CAT}(0)$ group.
(2) The subgroups $\langle S\rangle$ and $\langle X\rangle$ of $\pi_{1}\left(\Delta_{A}\right)$ are free groups.
(3) $\pi_{1}\left(\Delta_{\mathrm{A}}\right)$ has exact factorization by $\langle S\rangle$ and $\langle X\rangle$.

Every element $\gamma \in \pi_{1}\left(\Delta_{A}\right)$ can be uniquely written in the normal forms $\gamma=g v$ and $\gamma=u h$ for $g, h \in\langle S\rangle$ and $v, u \in\langle X\rangle$. The correspondence between these two normal forms is given by the automaton A^{*} :

$$
g v=u h \text { in } \pi_{1}\left(\Delta_{A}\right) \quad \text { if and only if } g \xrightarrow{v \mid u} h \text { in } A^{*} .
$$

Automaton groups of bireversible automata

Proposition (Bondarenko-Kivva)

Let A be a bireversible automaton. Then

$$
G_{A} \cong F_{S} / K \quad \text { and } \quad G_{\partial A} \cong F_{X} / K_{\partial},
$$

where K and K_{∂} are the maximal normal subgroups of $\pi_{1}\left(\Delta_{A}\right)$ that are contained in $F_{S}=\langle S\rangle$ and $F_{X}=\langle X\rangle$ respectively.
$G_{A}, G_{\partial A}$ are finite iff $\pi_{1}\left(\Delta_{A}\right)$ is virtually $F_{n} \times F_{m}$ (reducible lattice in the product of two trees)
$\pi_{1}\left(\Delta_{A}\right)$ is just-infinite $\Rightarrow G_{A}$ and $G_{\partial A}$ are free groups

Question: What is the relation between G_{A} and $G_{\partial A}$?
The transition group:

$$
T_{A}=\pi_{1}\left(\Delta_{A}\right) / K \times K_{\partial}=G_{A} \cdot G_{\partial A} .
$$

Aleshin automaton and Wise's example

Wise's complex

Aleshin automaton

2017 Bondarenko-Kivva: $\pi_{1}\left(\Delta_{A}\right)$ is non-residually finite

Affine action on the ring of formal power series

Let F be a finite field, $F(t)$ rational function field, $F[[t]]$ formal power series ring.

The polynomial ring $F[t]$ has a natural structure of a regular rooted tree with boundary $F[[t]]$, given by the sequence of ideals

$$
(1) \supset(t) \supset\left(t^{2}\right) \supset\left(t^{3}\right) \supset \ldots
$$

The affine group

$$
\operatorname{Aff}(F[[t]])=\left\{\pi_{a, b}: x \mapsto a x+b, a \in F[[t]]^{*}, b \in F[[t]]\right\}
$$

acts on this tree by automorphisms (self-similar group).
Then:

$$
\operatorname{Aff}(F[[t]]) \cap \operatorname{FAut}(F[t])=\operatorname{Aff}(F(t) \cap F[[t]])
$$

Example: the lamplighter group

Let $f(t)=1+t \in \mathbb{F}_{2}[t]$. Then

$$
\begin{aligned}
& \pi_{1+t, 0}\left(0+a_{1} t+\ldots\right)=0+t\left[(1+t)\left(a_{1}+a_{2} t+\ldots\right)\right] \\
& \pi_{1+t, 0}\left(1+a_{1} t+\ldots\right)=1+t\left[(1+t)\left(a_{1}+a_{2} t+\ldots\right)+1\right] \\
& \pi_{1+t, 1}\left(0+a_{1} t+\ldots\right)=1+t\left[(1+t)\left(a_{1}+a_{2} t+\ldots\right)\right] \\
& \pi_{1+t, 1}\left(1+a_{1} t+\ldots\right)=0+t\left[(1+t)\left(a_{1}+a_{2} t+\ldots\right)+1\right]
\end{aligned}
$$

$$
\begin{aligned}
G_{A_{f}} & =\left\langle\pi_{1+t, 0}, \pi_{1+t, 1}\right\rangle \\
& =\mathbb{F}_{2}\left[(1+t)^{ \pm 1}\right] \rtimes\langle 1+t\rangle \\
& =\mathbb{Z}_{2} \backslash \mathbb{Z},
\end{aligned}
$$

the lamplighter group
A_{f} is not bireversible

2005 Silva-Steinberg: consider $H[[t]]$ for a finite abelian H, $f(t)=1-t \in H[[t]], G_{A_{f}}=H \imath \mathbb{Z}$

2006 Bartholdi-Sunik:

- polynomials over $\mathbb{Z} / n \mathbb{Z}, G_{A}=(\mathbb{Z} / n \mathbb{Z})^{d} \imath \mathbb{Z}$
- the ring \mathbb{Z}_{n} of n-adic integer, multiplication by m, G_{A} is the Baumslag-Solitar group $B(1, m)$

2006 Bartholdi-Neuhauser-Woess: consider a finite commutative ring $R, I_{i} \in R$ satisfying certain conditions, an automaton group
$\Gamma_{d}(R)=R\left[\left(t+I_{1}\right)^{-1}, \ldots,\left(t+I_{d-1}\right)^{-1}, t\right] \rtimes\left\langle t+I_{1}, \ldots, t+I_{d-1}\right\rangle$

2017 Skipper-Witzel-Zaremsky: for every n a simple group of type F_{n-1} but not of type F_{n}

Example with a rational function

$$
\begin{aligned}
& \text { Let } f(t)=\frac{1+t+t^{2}}{1+t^{2}} \in \mathbb{F}_{2}(t) \text {. Then } A_{f} \text { is bireversible and } \\
& G_{A_{f}}=(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) \imath \mathbb{Z} \text { and } G_{\partial A_{f}}=\mathbb{Z} / 2 \mathbb{Z} \imath \mathbb{Z} .
\end{aligned}
$$

Let $f(t)=\frac{p(t)}{q(t)} \in F(t)$ be non-constant. We assume

$$
\begin{array}{lll}
(q(t), t)=1 & \Rightarrow \quad f \in F[[t]] \quad \text { and } \pi_{f, 0} \curvearrowright F[[t]] \\
(p(t), t)=1 & \Rightarrow \quad f^{-1} \in F[[t]] \text { and } \pi_{f, 0} \text { is invertible }
\end{array}
$$

Let A_{f} be the automaton for $\pi_{f, 0}$. The states of A_{f} are $\pi_{f, b}$ for $b \in B$, where B is a finite additive subgroup of $F(t)$.

Proposition

1) A_{f} is bireversible iff $\operatorname{deg} p(t)=\operatorname{deg} q(t)$
2) $G_{A_{f}}=B\left[f, f^{-1}\right] \rtimes\langle f\rangle \cong(\mathbb{Z} / p \mathbb{Z})^{m} \imath \mathbb{Z}$ for some $m \geqslant 1$

Question: What is the dual action?

$$
\partial A_{f} \stackrel{?}{=} A_{g ?}
$$

Extending the construction

Fix $g(t) \in F(t)$. The field extension $F(t) \supset F(g(t))$ is finite of degree $d=\operatorname{deg} g(t)$, here $1, t, \ldots, t^{d-1}$ is a basis. Then every $f(t) \in F(t)$ can be written as

$$
\begin{aligned}
f(t) & =r_{0}(g(t))+t \cdot r_{1}(g(t))+\ldots+t^{d-1} r_{d-1}(g(t))= \\
& =\sum_{n \geqslant-k} a_{n}(t) g^{n}(t), \text { where } a_{n}(t) \in F_{<d}[t] .
\end{aligned}
$$

Fix $g(t) \in F(t)$. The field extension $F(t) \supset F(g(t))$ is finite of degree $d=\operatorname{deg} g(t)$, here $1, t, \ldots, t^{d-1}$ is a basis. Then every $f(t) \in F(t)$ can be written as

$$
\begin{aligned}
f(t) & =r_{0}(g(t))+t \cdot r_{1}(g(t))+\ldots+t^{d-1} r_{d-1}(g(t))= \\
& =\sum_{n \geqslant-k} a_{n}(t) g^{n}(t), \text { where } a_{n}(t) \in F_{<d}[t] .
\end{aligned}
$$

$R_{g}=\left\{f(t) \in F(t): f(t)=\sum_{n \geqslant 0} a_{n}(t) g^{n}(t)\right\}$ is a subring of $F(t)$.
We can consider the action of $\operatorname{Aff}\left(R_{g}\right)$ on the tree T_{g} given by the ideals $\left(g^{n}(t)\right), n \geqslant 0$.

Automata $A_{(f, g)}$

Let $f(t)=\frac{p_{1}(t)}{q_{1}(t)}, g(t)=\frac{p_{2}(t)}{q_{2}(t)} \in F(t)$ be such that $f(t) \in R_{g}$. We can consider the action of $f(t)$ on the tree T_{g} by multiplication. Let $A_{(f, g)}$ be the corresponding automaton.
If $g(t)=t$ then $A_{(f, g)}=A_{f}$ is just standard automaton for $f(t)$.

Theorem

1) $A_{(f, g)}$ is bireversible if and only if $p_{1}, p_{2}, q_{1}, q_{2}$ are pairwise coprime and either $\operatorname{deg} p_{1}(t)=\operatorname{deg} q_{1}(t)$ or $\operatorname{deg} p_{2}(t)=\operatorname{deg} q_{2}(t)$.
2) $G_{A_{(f, g)}}$ is a lamplighter group.

Automata $A_{(f, g)}$

Let $f(t)=\frac{p_{1}(t)}{q_{1}(t)}, g(t)=\frac{p_{2}(t)}{q_{2}(t)} \in F(t)$ be such that $f(t) \in R_{g}$. We can consider the action of $f(t)$ on the tree T_{g} by multiplication. Let $A_{(f, g)}$ be the corresponding automaton.
If $g(t)=t$ then $A_{(f, g)}=A_{f}$ is just standard automaton for $f(t)$.

Theorem

1) $A_{(f, g)}$ is bireversible if and only if $p_{1}, p_{2}, q_{1}, q_{2}$ are pairwise coprime and either $\operatorname{deg} p_{1}(t)=\operatorname{deg} q_{1}(t)$ or $\operatorname{deg} p_{2}(t)=\operatorname{deg} q_{2}(t)$.
2) $G_{A_{(f, g)}}$ is a lamplighter group.

Inverse \& Dual: $\imath\left(A_{(f, g)}\right)=A_{\left(f^{-1}, g\right)}$ and $\partial\left(A_{(f, g)}\right)=A_{\left(g^{-1}, f^{-1}\right)}$
Eight automata correspond to the pairs $\left(f^{ \pm 1}, g^{ \pm 1}\right)$ and $\left(g^{ \pm 1}, f^{ \pm 1}\right)$.

Let $f(t), g(t) \in F(t)$ and consider two subsets of $\operatorname{Aff}(F(t))$:

$$
X_{f}=\left\{\pi_{f, a}, a \in S_{f}\right\} \quad \text { and } \quad X_{g}=\left\{\pi_{g, b}, b \in S_{g}\right\}
$$

where $S_{\frac{p(t)}{q(t)}}=\left\{a(t) / q(t): a(t) \in F[t], \operatorname{deg} a(t)<\operatorname{deg} \frac{p(t)}{q(t)}\right\}$.

The automaton $A_{(f, g)}$ has the states X_{f} over the alphabet X_{g},

$$
\pi_{f, a} \xrightarrow{\pi_{g, b} \mid \pi_{g, b^{\prime}}} \pi_{f, a^{\prime}} \quad \text { iff } \quad \pi_{f, a} \circ \pi_{g, b}=\pi_{g, b^{\prime}} \circ \pi_{f, a^{\prime}}
$$

Let $f(t), g(t) \in F(t)$ and consider two subsets of $\operatorname{Aff}(F(t))$:

$$
X_{f}=\left\{\pi_{f, a}, a \in S_{f}\right\} \text { and } X_{g}=\left\{\pi_{g, b}, b \in S_{g}\right\},
$$

where $S_{\frac{p(t)}{q(t)}}=\left\{a(t) / q(t): a(t) \in F[t], \operatorname{deg} a(t)<\operatorname{deg} \frac{p(t)}{q(t)}\right\}$.

The automaton $A_{(f, g)}$ has the states X_{f} over the alphabet X_{g},

$$
\pi_{f, a} \xrightarrow{\pi_{g, b} \mid \pi_{g, b^{\prime}}} \pi_{f, a^{\prime}} \quad \text { iff } \quad \pi_{f, a} \circ \pi_{g, b}=\pi_{g, b^{\prime}} \circ \pi_{f, a^{\prime}}
$$

Then

$$
\begin{aligned}
G_{A} & =\left\langle X_{f}\right\rangle=S_{f}\left[f, f^{-1}\right] \rtimes\langle f\rangle \\
G_{\partial A} & =\left\langle X_{g}\right\rangle=S_{g}\left[g, g^{-1}\right] \rtimes\langle g\rangle \\
T\left(A_{(f, g)}\right) & =\left\langle X_{f}, X_{g}\right\rangle=\left\langle X_{f}\right\rangle\left\langle X_{g}\right\rangle=G_{A} \cdot G_{\partial A} \\
& =\left(S_{f}\left[f, f^{-1}\right]+S_{g}\left[g, g^{-1}\right]\right) \rtimes\langle f, g\rangle
\end{aligned}
$$

The rings of S-integers

Let S be a finite set of places of $F(t)$ and \mathcal{O}_{S} the ring of S-integers of $F(t)$. We can find $g(t) \in F(t)$ such that

$$
\mathcal{O}_{S} \cap S_{g}\left[g, g^{-1}\right]=\{0\} \quad \Rightarrow \quad \operatorname{Aff}\left(\mathcal{O}_{S}\right) \cap \operatorname{Aff}\left(S_{g}\left[g, g^{-1}\right]\right)=\{i d\}
$$

Theorem

The group $\operatorname{Aff}\left(\mathcal{O}_{S}\right)$ can be realized by a bireversible automaton

Corollary: Bireversible automata A such that G_{A} is finitely presented, while $G_{\partial A}$ is not.

Corollary: A basic construction of

- a family of bireversible automata
- irreducible lattices in the product of two trees
- non-residually finite CAT(0) groups
- directed VH square complexes

Question: What is the nature of $\pi_{1}\left(\Delta_{\left.A_{(f, g)}\right)}\right.$?

Corollary: A basic construction of

- a family of bireversible automata
- irreducible lattices in the product of two trees
- non-residually finite CAT(0) groups
- directed VH square complexes

Question: What is the nature of $\pi_{1}\left(\Delta_{A_{(f, g)}}\right)$?

Conjecture: Groups generated by bireversible automata are linear

Thank You for attention!

