

Inverse and Partial Automaton Semigroups

Jan Philipp Wächter

Universität Stuttgart Institut für Formale Methoden der Informatik (FMI) Abteilung für Theoretische Informatik

11th Feburary 2019

Conjecture (Steinberg 2015)

There is an automaton group with PSPACE -complete word problem.

 Straight-forward guess and check algorithm: (uniform) word problem for automaton (semi)groups is in PSPACE.

Conjecture (Steinberg 2015)

There is an automaton group with PSPACE-complete word problem.

 Straight-forward guess and check algorithm: (uniform) word problem for automaton (semi)groups is in PSPACE.

Theorem (D'Angeli, Rodaro, W. 2017)

There is an automaton semigroup with PSPACE -complete word problem.

Proof uses direct encoding of Turing machine computations

Conjecture (Steinberg 2015)

There is an automaton group with PSPACE-complete word problem.

 Straight-forward guess and check algorithm: (uniform) word problem for automaton (semi)groups is in PSPACE.

Theorem (D'Angeli, Rodaro, W. 2017)

There is an automaton semigroup with PSPACE-complete word problem. There is an inverse automaton semigroup with PSPACE-complete word problem.

Proof uses direct encoding of Turing machine computations

Conjecture (Steinberg 2015)

There is an automaton group with PSPACE-complete word problem.

 Straight-forward guess and check algorithm: (uniform) word problem for automaton (semi)groups is in PSPACE.

Theorem (D'Angeli, Rodaro, W. 2017)

There is an automaton semigroup with PSPACE-complete word problem. There is an inverse automaton semigroup with PSPACE-complete word problem.

- Proof uses direct encoding of Turing machine computations
- Groups: uniform word problem is NL-hard

Conjecture (Steinberg 2015)

There is an automaton group with PSPACE-complete word problem.

 Straight-forward guess and check algorithm: (uniform) word problem for automaton (semi)groups is in PSPACE.

Theorem (D'Angeli, Rodaro, W. 2017)

There is an automaton semigroup with PSPACE-complete word problem. There is an inverse automaton semigroup with PSPACE-complete word problem.

- Proof uses direct encoding of Turing machine computations
- Groups: uniform word problem is NL-hard
- → inverse automaton semigroups are useful to obtain results for decision problem

- Groups arise from bijective maps (Cayley Theorem)
- Inverse semigroups arise naturally from partial one-to-one maps (Preston-Vagner Theorem)
- Automaton Structures:
 - complete, invertible automata generate groups
 - partial, invertible automata generate inverse semigroups

- Groups arise from bijective maps (Cayley Theorem)
- Inverse semigroups arise naturally from partial one-to-one maps (Preston-Vagner Theorem)
- Automaton Structures:
 - complete, invertible automata generate groups
 - partial, invertible automata generate inverse semigroups
- → partial, invertible automata are a natural way to present inverse automaton semigroups

Why restrict automaton semigroups to complete automata?

Reminder: Wang tile $c_{\underline{w}_{C_s}}^{\underline{c}_{c_r}} c_{\underline{e}}$, tileset finite set of Wang tiles

Theorem (Lukkarila 2009)

For every Turing machine M, one can compute a 4-way-deterministic Wang tileset T s.t. T tiles $\mathbb{Z}^2 \iff M$ does not halt

Reminder: Wang tile $c_{\underline{w}_{C_s}}^{\underline{c}_{C_s}} c_{\underline{e}}$, tileset finite set of Wang tiles

Theorem (Lukkarila 2009)

For every Turing machine M, one can compute a 4-way-deterministic Wang tileset T s.t. T tiles $\mathbb{Z}^2 \iff M$ does not halt

Theorem (D'Angeli, Rodaro, W. arXiv 2017)

The problem

Input: a partial, invertible, bi-reversible automaton

Question: does it generate a finite semigroup?

is undecidable.

Reminder: Wang tile $c_{W_{C_{-}}}^{\square C_{n}} c_{e}$, tileset finite set of Wang tiles

Theorem (Lukkarila 2009)

For every Turing machine M, one can compute a 4-way-deterministic Wang tileset T s.t. T tiles $\mathbb{Z}^2 \iff M$ does not halt

Theorem (D'Angeli, Rodaro, W. arXiv 2017)

```
The problem "Partial" is intrinsic here;
Input: a partial, invertible, bi-reversible automaton
The problem
```

Question: does it generate a finite semigroup?

is undecidable.

Reminder: Wang tile $c_{W_{C_{-}}}^{\square C_{n}} c_{e}$, tileset finite set of Wang tiles

Theorem (Lukkarila 2009)

For every Turing machine M, one can compute a 4-way-deterministic Wang tileset T s.t. T tiles $\mathbb{Z}^2 \iff M$ does not halt

Theorem (D'Angeli, Rodaro, W. arXiv 2017)

The problem "Partial" is intrinsic here;
Input: a partial, invertible, bi-reversible automaton The problem

Question: does it generate a finite semigroup?

is undecidable.

Warning: does not show undecidability of finiteness problem for inverse automaton semigroups!

Brandt semigroup
$$B_2 = \langle p, q \mid pqp = p, qpq = q, p^3 = p^2 = q^2 = q^3 \rangle = \{p, q, pq, qp, 0\}$$

= Synt $((pq)^+) \simeq$ Synt $((ab)^+)$

Brandt semigroup
$$B_2 = \langle p, q \mid pqp = p, qpq = q, p^3 = p^2 = q^2 = q^3 \rangle = \{p, q, pq, qp, 0\}$$

= $Synt((pq)^+) \simeq Synt((ab)^+)$

Complete automaton

Brandt semigroup
$$B_2 = \langle p, q \mid pqp = p, qpq = q, p^3 = p^2 = q^2 = q^3 \rangle = \{p, q, pq, qp, 0\}$$

= $\operatorname{Synt}((pq)^+) \simeq \operatorname{Synt}((ab)^+)$
*2ero": $\forall s \in S: 0s = s0 = 0$

Complete automaton

Partial automaton

Brandt semigroup
$$B_2 = \langle p, q \mid pqp = p, qpq = q, p^3 = p^2 = q^2 = q^3 \rangle = \{p, q, pq, qp, 0\}$$

= $\operatorname{Synt}((pq)^+) \simeq \operatorname{Synt}((ab)^+)$

Complete automaton

Partial automaton

→ more concise presentation!

Example: Free monogenic inverse monoid

Every element of the free monogenic inverse monoid is characterized

by m, n and k with $-m \le k \le n$

Example: Free monogenic inverse monoid

Every element of the free monogenic inverse monoid is characterized

by m, n and k with $-m \le k \le n$ and can be written as $\bar{q}^{n-k}q^{m+n}\bar{q}^m$

Example: Free monogenic inverse monoid

Every element of the free monogenic inverse monoid is characterized

by m, n and k with $-m \le k \le n$ and can be written as $\bar{q}^{n-k}q^{m+n}\bar{q}^m$

 Claim: The following modification of the adding machine generates the free monogenic inverse monoid.

Automaton Inverse $1/0 \ \ \begin{array}{c} \text{O}/1 \\ \hline 0/\hat{1} \\ \hline 0/\hat{1} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 0/\hat{0} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 1/\hat{1} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 0/\hat{0} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 0/\hat{0} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 0/\hat{0} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 1/\hat{0} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 1/\hat{1} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 1/\hat{1} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 1/\hat{1} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline 1/\hat{1} \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\ \hline \end{array} \ \ \begin{array}{c} 0/0 \\$

(based on a similar construction by Olijnyk, Sushchansky and Slupik)

$$1/0 \bigcirc \begin{array}{c} 0/1 \\ \hline \hat{0}/\hat{1} \\ \hline \end{array} \qquad \begin{array}{c} 0/0 \\ 1/1 \\ \hline \end{array} \qquad \begin{array}{c} \hat{0}/\hat{0} \\ 1/\hat{1} \\ \end{array}$$

Inverse

$$0/1 \xrightarrow{\bar{q}} \frac{1/0}{\hat{1}/\hat{0}} \xrightarrow{\text{id}} \frac{0/0}{1/1} \xrightarrow{\hat{0}/\hat{0}}$$

$$\mathbf{q} = \bar{q}^{n-k}q^{m+n}\bar{q}^m \neq \bar{q}^{n'-k'}q^{m'+n'}\bar{q}^{m'} = \mathbf{q}'$$
 if $m \neq m'$, $n \neq n'$ or $k \neq k'$

Automaton

Inverse

Goal:

$$\mathbf{q} = \bar{q}^{n-k}q^{m+n}\bar{q}^m \neq \bar{q}^{n'-k'}q^{m'+n'}\bar{q}^{m'} = \mathbf{q}'$$
 if $m \neq m'$, $n \neq n'$ or $k \neq k'$

$$\mathbf{q} \circ \operatorname{bin}(0) = \operatorname{bin}(-m + (m+n) - (n-k)) = \operatorname{bin}(k) \neq \operatorname{bin}(k') = \mathbf{q'} \circ \operatorname{bin}(0)$$

Automaton $\begin{array}{c|c} \hline q & 0/1 \\ \hline \hat{0}/\hat{1} & \text{id} \\ \hline \end{array}$ $\begin{array}{c|c} 0/0 & \hat{0}/\hat{0} \\ 1/1 & \hat{1}/\hat{1} \end{array}$

Inverse
$$0/1 \qquad \boxed{\bar{q}} \qquad \frac{1/0}{\hat{1}/\hat{0}} \qquad \text{id} \qquad \frac{0/0}{1/1} \qquad \hat{0}/\hat{1}$$

$$\mathbf{q} = \bar{q}^{n-k}q^{m+n}\bar{q}^m \neq \bar{q}^{n'-k'}q^{m'+n'}\bar{q}^{m'} = \mathbf{q}'$$
 if $m \neq m'$, $n \neq n'$ or $k \neq k'$

$$\mathbf{q} \circ \operatorname{bin}(0) = \operatorname{bin}(-m + (m+n) - (n-k)) = \operatorname{bin}(k) \neq \operatorname{bin}(k') = \mathbf{q'} \circ \operatorname{bin}(0)$$

k = k'. m < m':

$$bin(m)\hat{0} \xrightarrow{\bar{q}^m} bin(0)\hat{0} \xrightarrow{\bar{q}^{m+n}} bin(m+n)\hat{0} \xrightarrow{\bar{q}^{n-k}} bin(m+k)\hat{0}$$

Automaton

Inverse
$$0/1 \xrightarrow{\bar{q}} \frac{1/0}{\hat{1}/\hat{0}} \text{ id} \xrightarrow{0/0} \frac{\hat{0}/\hat{0}}{1/1} \frac{\hat{0}/\hat{0}}{\hat{1}/\hat{1}}$$

Goal:

$$\mathbf{q} = \bar{q}^{n-k}q^{m+n}\bar{q}^m \neq \bar{q}^{n'-k'}q^{m'+n'}\bar{q}^{m'} = \mathbf{q}'$$
 if $m \neq m'$, $n \neq n'$ or $k \neq k'$

3 k = k', m = m', n < n':

$$bin(-1-n)\hat{1} \xrightarrow{\overline{q}^m} bin(-1-n-m)\hat{1} \xrightarrow{q^{m+n}} bin(-1)\hat{1} \xrightarrow{\overline{q}^{n-k}} bin(-1-n+k)\hat{1}$$

Questions

- Does the class of partial automaton semigroups coincide with the class of complete automaton semigroups?
 Of course: Every complete automaton is in particular a partial one.
- 2 Is every inverse automaton semigroup generated by an invertible (partial) automaton?

Questions

- 1 Does the class of partial automaton semigroups coincide with the class of complete automaton semigroups? Of course: Every complete automaton is in particular a partial one.
 - → We don't know! But...
- 2 Is every inverse automaton semigroup generated by an invertible (partial) automaton?
 - → Yes! (D'Angeli, Rodaro, W. arXiv 2018)

- take partial automaton with alphabet $\Sigma = \{a, b, c, \dots\}$ and states $Q = \{p, \dots\}$
- add new state 0 and new letter \bot
- make automaton complete:

- take partial automaton with alphabet $\Sigma = \{a, b, c, \dots\}$ and states $Q = \{p, \dots\}$
- add new state 0 and new letter \bot
- make automaton complete:

- take partial automaton with alphabet $\Sigma = \{a, b, c, \dots\}$ and states $Q = \{p, \dots\}$
- add new state 0 and new letter \bot
- make automaton complete:

Reminder: zero of a semigroup $\forall s : 0s = s0 = 0$

- take partial automaton with alphabet $\Sigma = \{a, b, c, \dots\}$ and states $Q = \{p, \dots\}$
- add new state 0 and new letter \bot
- make automaton complete:

• Does this adjoin a new zero? $S \rightsquigarrow S^0$?

Reminder: zero of a semigroup $\forall s : 0s = s0 = 0$

- take partial automaton with alphabet $\Sigma = \{a, b, c, \dots\}$ and states $Q = \{p, \dots\}$
- add new state 0 and new letter \bot
- make automaton complete:

• Does this adjoin a new zero? $S \rightsquigarrow S^0$? \rightsquigarrow In general: No

- take partial automaton with alphabet $\Sigma = \{a, b, c, \dots\}$ and states $Q = \{p, \dots\}$
- add new state 0 and new letter \bot
- make automaton complete:

- Does this adjoin a new zero? $S \rightsquigarrow S^0$? \rightsquigarrow In general: No
- add another new letter T

Using a zero

Construction yields:

Proposition (D'Angeli, Rodaro, W. 2017/arXiv 2018)

S partial automaton semigroup $\implies S^0$ complete automaton semigroup

Using a zero

Construction yields:

Proposition (D'Angeli, Rodaro, W. 2017/arXiv 2018)

S partial automaton semigroup $\implies S^0$ complete automaton semigroup

Without additional letter, we (possibly) re-use existing zero of original semigroup. Is this always possible?

Using a zero

Construction yields:

Proposition (D'Angeli, Rodaro, W. 2017/arXiv 2018)

S partial automaton semigroup $\implies S^0$ complete automaton semigroup

Without additional letter, we (possibly) re-use existing zero of original semigroup.
 Is this always possible? → Yes!

Theorem (D'Angeli, Rodaro, W. arXiv 2018)

S: partial automaton semigroup

Then: S contains zero \implies S complete automaton semigroup

Proof construction: Assume zero is a state, add (single) new letter and make automaton complete (in the same way as our first attempt above)

No zero

What about automaton semigroups without a zero?

No zero

What about automaton semigroups without a zero?

Open Problem (Cain 2009)

 S^0 complete automaton semigroup $\stackrel{?}{\Longrightarrow} S$ complete automaton semigroup

No zero

What about automaton semigroups without a zero?

Open Problem (Cain 2009)

```
S^0 complete automaton semigroup \stackrel{?}{\Longrightarrow} S complete automaton semigroup
```

```
If positive answer: S partial automaton semigroup \implies S^0 complete automaton semigroup \implies S complete automaton semigroup
```

"positive answer" ⇒ "classes coincide"

What about the other direction?

"positive answer" ← "classes coincide"

What about the other direction?

Theorem (D'Angeli, Rodaro, W. arXiv 2018)

 S^0 partial automaton semigroup $\implies S$ partial automaton semigroup

Thus: If classes coincide, problem has positive answer.

Corollary

"positive answer" ←⇒ "classes coincide"

"positive answer" \Leftarrow "classes coincide"

What about the other direction?

Theorem (D'Angeli, Rodaro, W. arXiv 2018)

 S^0 partial automaton semigroup $\implies S$ partial automaton semigroup

Thus: If classes coincide, problem has positive answer.

Corollary

"positive answer" ⇔ "classes coincide"

Proof construction (for theorem): Remove zero state(s) with all ingoing transitions

Problem:

Inverse Semigroups and Invertible Automata

Proposition (Cain 2009)

A group is an automaton group if and only if it is an automaton semigroup.

Theorem (D'Angeli, Rodaro, W. arXiv 2018)

Every inverse automaton semigroup is generated by a partial, invertible automaton.

Inverse Semigroups and Invertible Automata

Proposition (Cain 2009)

A group is an automaton group if and only if it is an automaton semigroup.

Theorem (D'Angeli, Rodaro, W. arXiv 2018)

Every inverse automaton semigroup is generated by a partial, invertible automaton.

Proof: similar to Cain's proof, uses variation of Preston-Vagner Theorem

Theorem

S: inverse semigroup of partial maps $X \rightarrow_p X$

Then: all $\varphi_s : \overline{s}(X) \to s(X)$ are one-to-one and $S \to I_X$, $s \mapsto \varphi_s$ is injective.

$$\bar{s}(x) \mapsto s\bar{s}(x)$$

Open Problems

- Do the classes of partial automaton semigroups and of complete automaton semigroups coincide?
 - Negative answer is difficult to show: one needs to prove that a partial automaton semigroup is **not** a complete one.
- What is the complexity of the word problem for automaton groups (uniform/non-uniform)? (Steinberg Conjecture)
 known for inverse automaton semigroups
- Is the finiteness problem for inverse automaton semigroups (and groups) decidable? strengthened version for invertible automata known

Thank you!