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Spectral graph theory wants to understand how the spectra of

various operators defined on (functions on) the graph are related

to the geometry of the graph.

There are many possible variations on the theme of the famous

question:

Can one hear the shape of a drum? (M. Kac)

A graph Γ → the adjacency matrix, the discrete laplacian OR

the Markov operator M = transition matrix of the simple

random walk on the graph.

An important class of examples: Cayley graphs of (infinite) finitely

generated groups. (G ,S) → Cay(G , S). (we assume S = S−1)

The Markov operator on the Cayley graph can then be understood

as

M(= MS) =
1

|S |
∑
s∈S

s : l2(G ) x
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We can also think of M as an element of the group algebra and

consider its images in different representations. The one above (the

most classical one) is the left regular representation π : G → l2(G ).

Recently much attention focused on quasi-resular representations

of type πH : G → l2(G/H) where H < G : the operator πH(M) is

then the Markov operator of the simple random walk on the

graph Sch(G ,H, S);

or Koopman representations of type πX : G → L2(X ,m) if we have

a measure preserving action of G on a probability space (X ,m).

Given a finitely generated group G and/or a group action

G y T we are intersted in the spectra of Markov operators

on the corresponding Cayley and Schreier graphs.

Mf (g) =
1

|S |
∑
s∈S

f (gs), for f ∈ l2(Vert(Γ)), g ∈ Vert(Γ).

spec(M) ⊆ [−1, 1]
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Q.: Can one hear the shape of a group? (Valette, Fujiwara)

No: there are non-isomorphic groups with isomorphic Cayley

graphs.

Less obvious example: Spectrum of Zd with standard generators is

[−1, 1] for each d . Moreover, this is the case of any bipartite

Cayey graph of a torsion free amenable group.

- The spectrum is symmetric iff G is bipartitie.

- Kesten : G is amenable if and only if 1 ∈ spec(M(G ,S)) for

every finite symmetric generating set S ⊂ G .

- The absence of non-trivial idempotents in C ∗r (G ) of a torsion free

group G (Kadison-Kaplansky Conjecture, true for amenable

groups) implies that the spectrum is an interval.

More examples? Non-amenable examples? Torsion examples?
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Q.: What shape can the spectrum take? What is the

spectral measure type?

M being a self-adjoint bounded operator on a Hilbert space, its

spectrum is a compact subset of R. It gives rise to a

projection-valued ”spectral” measure on the spectrum which has

three components: pure-point, continuous w.r.to the Lebsgue

measure and continous singular w.r.to the Lebesgue measure.

There are examples of regular graphs (non Cayley) with a.c.

spectral measure on a union of (countably many) intervals with

gaps (Aizenmann-Schenker); with p.p. spectrum on a Cantor set

of Lebesgue measure 0 (Bartholdi-Grigorchuk), with a non-zero

singular continuous component (Simon)...

But maybe more rigidity for Cayley graphs can be expected.
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For Cayley graphs, D. Cartwright and G. Kuhn showed in 1970’s

that it is possible to get the spectrum a union of two intervals or

the union of an interval and one or two points on free products of

a finite number of cyclic groups.

Theorem

(Grigorchuk - Dudko, Grigorchuk - N. - Perez ’18) For each

m ≥ 2, there is a continuum of pairwise non quasi-isometric

groups such that, for a certain choice of generators,

spec(M) =

[
− 1

2m−1
, 0

]
∪
[

1− 1

2m−1
, 1

]
.

Hence we obtain here examples of Cayley graphs where the

spectrum is a union of two intervals. Moreover these are examples

of isopectral non quasi-isometric Cayley graphs.

No examples of Cayley graphs with other shape of spectrum, so

far...
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Q.: How does the spectrum depend on the choice of the

generating set S?

Valette - Béguin - Zuk ’97 considered the discrete Heisenberg

group of 3x3 matrices, which has two well-known presentations:

H3 =< x , y : [x , [x , y ]] = [y , [y , xl ] = 1 >=

< x , y , z : z = [x , y ], [x , z ] : [y , z ] = 1 > .

The spectrum of the first presentation is [−1, 1], while they showed

that the spectrum of the second presentation is the interval

[(−1−
√

2)/3, 1].

Can the shape of the spectrum change with the change of the

generating set? Can the spectral measure type change?

Lamplighter groups with specific generating sets (so-called

Diestel-Leader graphs): the spectrum is the interval [−1, 1]; the

spectral measure is pure point (Grigorchuk-Zuk, Lehner-Woess).

Standard generators?? no eigenvalue in the spectrum (Elek). 6
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Isotropic versus Anisotropic random walks

One can naturally consider a random walk on the graph Γ defined

by an arbitrary symmetric probability measure on the set of

generators S . This corresponds to making a step along an edge

labelled s with probability p(s), with the conidtion
∑

s∈S p(s) = 1.

Q.: How does the spectrum depend on the choice of the

weights {p(s)}s∈S on the generators?
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The groups. (A variation of a construction of Bartholdi and

Sunic, ’00)

Let d ≥ 2 be an integer, and let Td be the d-regular infinite

rooted tree.

If X = {0, 1, . . . , d − 1}, then Td can be identified with X ∗.

G ≤ Aut(Td), transitive on each level of the tree. By continuity,

the action naturally extends to an action of G on ∂Td by

homeomorphisms. The boundary ∂Td can be identified with XN.

∅

0 1 2

00 01 02 10 11 12 20 21 22
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Let m ≥ 1 be an integer.

Consider A = Z/dZ = 〈a〉 and B = (Z/dZ)m.

Let ω = ω0ω1 · · · ∈ ΩN
d ,m = Epi(B,A)N.

a

b ∈ B

ω0(b) 1

ω1(b) 1

ω2(b) 1

a(v0v1 . . . vn) = (v0 + 1)v1 . . . vn

b(v0v1...vn)=

{
(d−1)r0ωr (b)(vr+1)vr+2...vn if v0v1...vn=(d−1)r0vr+1...vn

v0v1...vn otherwise

We consider the groups {Gω = 〈A,B〉}ω∈Ωd,m
≤ Aut(Td) with the

generating set S = A ∪ B \ {1}.
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1. Ex. Grigorchuk’s group

d = 2, m = 2.

A = Z/2Z, B = (Z/2Z)2.

Ωd ,m = Epi(B,A) Ω2,2 = {πb, πc , πd}
Gω = 〈a, b, c , d〉 acts on the binary tree, with ω = (πdπcπb)N.

2. Ex. The Gupta-Fabrykowski group

d = 3, m = 1.

A = Z/3Z, B = Z/3Z.

Ωd ,m = Epi(B,A) Ω3,1 = {π1, π2}
Gω = 〈a, b〉 acts on the ternary tree, with ω = πN1 .

3. Ex: d = 2, m = 1, |Ω| = 1, G1N = D∞.
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Schreier graphs of the Grigorchuk’s group (d = 2, m = 2,

ω = (πdπcπb)N, G = 〈a, b, c , d〉) for the action on the levels of the

tree:
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Schreier graphs of the Gupta-Fabrykowski group (d = 3, m = 1,

ω = πN
1 , G = 〈a, a2, b, b2〉) for the action on the levels of the tree:
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Scaling limit of finite Schreier graphs Γn

The limit space of the Gupta-Fabrykowski group is

J(z3(−3
2 + i

√
3

2 ) + 1).
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Infinite Schreier graphs of Grigorchuk’s group (d = 2, m = 2,

ω = (π0π1π2)N, Gω = 〈a, b, c , d〉) for the action on the boundary of

the tree:
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Infinite Schreier graphs of the Gupta-Fabrykowski group

(d = 3, m = 1, ω = πN, Gω = 〈a, a2, b, b2〉) for the action on the boundary

of the tree:
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Schreier dynamical system.

To each point ξ of the boundary we associate its orbital Schreier

graph (Γξ, ξ), viewed as a point in the space G∗,S of rooted,

oriented, labeled graphs equipped with local convergence.

F : ∂Td → G∗,S
ξ 7→ (Γξ, ξ)

Proposition

• If ξ = ξ0ξ1 . . . , the sequence (Γξ0...ξn , ξn) converges to (Γξ, ξ).

• For all Gω except d = 2, m = 1, F is injective.

• For all Gω, F is continuous except for the orbit Gω · (d − 1)N.

Schreier dynamical system G y F̄ , a closed subspace of G∗,S . The

action is p.m.p. w.r.t F∗ν with ν the uniform measure on ∂T .

Remark. Spectrum of Γξ doesn’t depend on ξ. 17



Ends.

Consider the number of ends of each graph. Γ is k-ended if, for

every η ∈ Γ, Γ \ {η} has ≤ k infinite connected components, and k

is minimal.

Proposition

Any Γξ has either one or two ends:

• Γξ is two-ended if ξ ∈ X ∗{0, d − 1}N \ Gω · (d − 1)N.

• Γξ is one-ended otherwise.

We define Sch(G ) := F (∂Td).

Theorem

(N., Perez, ’17) Sch(Gω) contains one-ended, two-ended and

d-ended graphs. If d = 2, the generic case is two ends, if d ≥ 3,

the generic case is one end.
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Spectral measure ν for Grigorchuk’s group (d = 2)
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Recall: Theorem

For d = 2, any m ≥ 1, and any Gω with the generating set S as

above,

spec(G ) = spec(Γ) =

[
− 1

2m−1
, 0

]
∪
[

1− 1

2m−1
, 1

]
.
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Theorem: Changing the generating set

(Follows from Grigorchuk, Lenz, N., ’15; Grigorchuk, Lenz, N.,

Sell ’18)

For d = 2, m ≥ 2 and any Gω there exists a (minimal) generating

set with the spectrum of any infinite Schreier graph Γ a Cantor

set of Lebesgue measure zero, purely singular continuous for

almost every ω.

The last Theorem is proved via considering anisotropic random

walks on infinite Schreier graphs and realizing the corresponding

operators as Schroedinger operators on subshifts of low complexity.

Q.: What is the spectrum of the Cayley graph for this

generating set?
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Theorem

(Grigorchuk, Lenz, N., ’15) Let Mw be a weighted laplacian on

the Schreier graph Γ = Γξ of a group Gω with d = 2. Then there

exists a subshift Σω such that Mw is unitary equivalent to the

Schroedinger operator on the subshift (T ,Σω), {Hσ : l2(Z) x}σ
given by two functions α, β : Σω → R and, for every u ∈ l2(Z),

(Hσu)(n) = α(T n−1σ)u(n − 1) + α(T nσ)u(n + 1) + β(T nσ)u(n)

For subshifts of low complexity, the following statement is

dubbed ”Cantor spectrum of Lebesgue measure 0”-theorem:

The spectrum of such operators is absolutely continuous on an

interval or a union of two intervals if α, β are periodic and, if not,

it is a Cantor set of Lebesgue measure 0; the spectral measure is

ω - a.s. singular continuous.
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Remarks

1. Periodic α, β correspond to isotropic weights w , and aperiodic

α, β - to anisotropic weights w on the generators S , in case of

subshifts determined by Schreir graphs.

2. If the spinal group is generated by an automaton, then the

subshift is substitutinal.

For the Grigorchuk group, the substitution is

κ : a 7→ aca; b 7→ d ; d 7→ c ; c 7→ b

The subshift is defined by the fixed point of the substitution

η = limn κ
n(a) as the subset of {a, b, c, d}Z : it consists of all

two-sided sequences whose set of finite subwords coincides with

the set of finite subwords of η.
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What do we mean by low complexity of a subshift?

Sufficient conditions for ”Cantor spectrum of Lebesgue measure 0

theorem”:

- linear repetitivity (ω - negligeble condition). A subshift (T ,Σ) is

called linearly repetitive (LR), if there exists a constantC > 0 such

that any word v ∈ Sub(Σ) occurs in any word w ∈ Sub(Σ) of

length at least C |v |. (Damanik - Lenz)

- Boshernitsan condition (ω a.s. condition). A subshift satisfies the

Boshernitsan condition (B) if the same condition is satisfied for all

v of length ln, for a certain increasing sequence {ln}. (Beckus -

Pogorzelski)

- Simple Toeplitz subshifts and their generalizations (all ω).

(Grigorchuk - Lenz - N. - Sell ’18).
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In a work with Perez, we define analogous notions of low

complexity (linear repetitivity, Boshernitzan, simple Toeplitz) for

(non-linear) Schreier graphs with d ≥ 3, and show that all Schreier

graphs of groups Gω are of low complexity, as in the case of d = 2.

Q.: Does it have implications on the spectrum type for

(anisotropic) random walk?

Recall that by results of Grigorchuk-N.-Perez, the spectrum of the

isotropic random walk on these graphs is a Cantor set of Lebesgue

measure zero.
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Thank you!


