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Spinal groups



Spinal groups - Grigorchuk’s group
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Grigorchuk’s group: G = (a, b, c,d) < Aut(X*), X ={0,1}.
A= (a)=7Z/2Z  B=(b,c,d) = (Z/27)>



Spinal groups - Definition

We want to generalize Grigorchuk's group in several ways:

- Action on any regular rooted tree:

d>2— A= (a) = Z/dZ

- More elements in B:

m>1— B=(Z/dZ)"



Spinal groups - Definition

Let d >2and X ={0,1,...,d — 1}.
Let m>1, A=2Z/dZ = (a) and B = (Z/dZ)™.

Definition [Bartholdi, Suni¢, 2000]
An automaton with states AU B and alphabet X defines a spinal
group if its edges are of these types
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for some epimorphism w : B — A and automorphism p: B — B.

G = (AU B) < Aut(X*)

(The definition can be generalized so that, for every d and m, we obtain an a

uncountable family of groups)



Spinal groups - Examples




Spinal groups - Examples

Infinite dihedral The Fabrykowski-Gupta group
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Dy = (a, b) G = (a,a*, b, b?
o = (a, = (a,a", b, b%)
d=2 w p w p
m=1 b+—a b—b d=3 b+ a b— b



Schreier graphs



Schreier graphs - Definition

Definition

Let G be a group, finitely generated by S = S™1, acting on a set

Y. We define its Schreier graph Sch(G, S, Y) as the graph
given by

o V=Y.
o E={(z,5z)|z€ Y,s e S}.

The graph is oriented and edge-labeled by the set S.

For spinal groups, we will always consider S = (AU B) \ {1}.



Schreier graphs - Examples

Grigorchuk’s group: G = (a, b, ¢, d)

w p
d—2 m—2 b a b—c
c+—a c—d
d—1 d—b

M3 =Sch(G,S, X3)



Schreier graphs - Examples




Schreier graphs - Construction

There is a natural recursive way of constructing Sch(G, S, X"*1)
from Sch(G, S, X") (similar to Bondarenko's inflation of graphs):

VAV AR

(d-1)"0 (d-1)"'o (d-1)"0 | (d-1)"'00 (d-1)"t01 (d-1)"'0(d-1)

Take d copies of Sch(G, S, X") Label each copy accordingly Connect the vertices (dfl)"'10]
following wp"~1(b)

Yvo...vpe1 € X"\ {(d —1)"710}, VieX, VseS,
S(Vo . Vn_lf) = S(Vo . Vn_l)i
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Schreier graphs - Construction

The action of G can be extended naturally to the boundary XN of
the tree. Orbits are cofinality classes.

For ¢ € XN, the marked graph (Sch(G, S, G¢),€) is the limit of
(Sch(G,S5,X™), & ...,&q—1) in the space of rooted graphs.

Definition

A sequence of rooted graphs (I, vj,) converges to (I, v) if

VreN, INeN, VYn>N, B,(r)=B,(r).
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Schreier graphs - More examples

Grigorchuk’s group: G = (a, b, ¢, d)

w P
d—2 m—2 b— a b—c
c+—a c—d
d—1 d— b

T 0011...  1011.,1001... < . 11014 T100...

1 Sch(G, S, 1Y)

TCU010... 10107, 1000... < 0100... = < 0001...
Sch(G, S,0M)
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Schreier graphs - More examples

The Fabrykowski-Gupta group: G = (a, a°, b, b?)

Sch(G, 572N) 21... 221... 2221...
P K}
d=3 201... 2201...
M M2 3
m=1 20... 200... 220... 2200...
w 2221... 21...
b+ a s M
b2 s 22 2201... o1...
3 M 2. 202... 222... 22202...
2202... 22... 02... ry T4
P Sch(G, S,0Y) 22201...
b— b Ty
b? — b? 20201...
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Schreier graphs - Space of rooted graphs

Let Gs . be the space of rooted graphs with edge labels in S. We
consider the map
F: XN o Gs.
£ = ([e9)

Remarks

- F is injective.

- F is continuous everywhere except in the orbit of (d — 1)V,

- F(XN) contains only one and two-ended graphs, but F(XY)

contains d-ended graphs as well.
- F(XN) has isolated points iff d = 2.
- The growth of I¢ is polynomial of degree log,(d) [Bondarenko].
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Schreier graphs - Limit spaces

Nekrashevych defined a notion of limit space J¢ for a contracting

(finite nucleus) automata group G.

We can embed the graphs I, in the plane in a way that they
approximate Jg:

X
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Spectral properties



Spectral properties - The Markov operator

Definition
Let ' = (V, E) be a k-regular graph.
The Markov operator M : (2(V) — (?(V) is defined by

=2 3 f(w)

wnrv

In our case:
M, 62(X”) %F(X )
rn:SCh(G,S,X )—> M f f
—1s] ;
M : ez(cg) ~ mcf)
[ = Sch(G, S, G¢) — M f(n
— s Z

seS 16



Spectral properties - Spectrum of M

We can exploit the self-similar nature of spinal groups in order to
compute the spectrum of the Markov operator M on .

Theorem [Dixmier 77, Proposition 3.4.9]

spec(M¢) C U spec(M,
n>0

lc amenable = spec(M) = U spec(M,
n>0

Notice: spec(M¢) does not depend on &.

Bartholdi and Grigorchuk computed the spectrum for Grigorchuk's
group (two intervals), the Fabrykowski-Gupta group (a Cantor set

plus a countable set), and other related examples. 17



Spectral properties - Spectrum of M

We have "
M, = —(An + By)
S|
with
0 1 11
1 0 1 1
A= | : = :
1 1 0 1
11 1
d™m 1A, +dm -1
dm—1
B, =

dm—1
Bn—1
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Spectral properties - Spectrum of M

We use the Schur complement method

det [ A B = det(A) det(D — CA~!B)
C D

to find a relation between spec(M,) and spec(M,_1):
z € spec(M,(t)) < 2’ € spec(M,_1(t'))
7 =d4(t,z), t'=dy(t,2)

Solving this recurrence allows to find spec(M,) explicitly.
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Spectral properties - Spectrum of M

Theorem [Grigorchuk, Nagnibeda, P.]

spec(My) = {1, Ao} U~ (OF-k(0)>
k=0

spec(Mg) = {1, Ao} Ut U F=n(0)

n>0

where F(x) = x2 — d(d — 1) and ¥ is a quadratic map.

If d =2, spec(M¢) = [~ 5m= s, 0] U1 — = =, 1].
If d > 3, spec(M) is a Cantor set plus a countable set of points.
Notice: spec(Mg) depends only on d and m.

20



Spectral properties - Spectrum of M

spec(Mg) is obtained as the preimage by the quadratic map 1 of
the Julia set of F(x) = x?> —d(d — 1).

Julia set of F(x) = x? -2 Julia set of F(x) = x> —6

Mandelbrot set
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Spectral properties - Spectral measure

The empirical spectral measure v of {I',}, is the weak limit of
the counting measures v, on [,,.

Theorem [Grigorchuk, Nagnibeda, P.]

If d =2, v is absolutely continuous with respect to the Lebesgue
measure.

If d > 3, v is concentrated in the set of eigenvalues of M,,.

N[
N =
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Spectral properties - Spectrum of Mg

We may also consider the Markov operator on Cay(G, S), the
Cayley graph of G:

Mc - ZZ(G) = e?(c;)

Mcsf(g Zf

SES

Theorem [Hulanicki]

G amenable = spec(M) C spec(Mg) for every ¢ € XV

Theorem [Grigorchuk, Dudko; Grigorchuk, Nagnibeda, P.]
If d =2, spec(M¢) = spec(Mg) for every £ € X
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Spectral properties - Final remarks

Remark
If d =2, Cayley and Schreier graphs have the same spectrum.

Corollary
There are uncountably many groups whose spectrum is the union
of two intervals.

Corollary
There are uncountably many pairwise non quasi-isometric

isospectral groups.
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Thank youl!
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