Spectral properties related to spinal groups

Aitor Pérez University of Geneva February 2019

Groups, automata and graphs, TUGraz

Outline

Spinal groups	Schreier graphs	Spectral properties
Grigorchuk's group	Definition	The Markov operator
Definition	Examples	Spectrum of M_{ξ}
Examples	Construction	Spectral measure
	More examples	Spectrum of M_G
	Space of rooted graphs	Final remarks
	Limit spaces	

Spinal groups - Grigorchuk's group

Grigorchuk's group:
$$G = \langle a, b, c, d \rangle \leq \operatorname{Aut}(X^*), \quad X = \{0, 1\}.$$

$$A = \langle a \rangle = \mathbb{Z}/2\mathbb{Z} \qquad B = \langle b, c, d \rangle = (\mathbb{Z}/2\mathbb{Z})^2$$

Spinal groups - Definition

We want to generalize Grigorchuk's group in several ways:

- Action on any regular rooted tree:

$$d \ge 2 \longrightarrow A = \langle a \rangle = \mathbb{Z}/d\mathbb{Z}$$

- More elements in *B*:

$$m \ge 1 \longrightarrow B = (\mathbb{Z}/d\mathbb{Z})^m$$

3

Spinal groups - Definition

Let $d \ge 2$ and $X = \{0, 1, \dots, d - 1\}$.

Let $m \geq 1$, $A = \mathbb{Z}/d\mathbb{Z} = \langle a \rangle$ and $B = (\mathbb{Z}/d\mathbb{Z})^m$.

Definition [Bartholdi, Šunić, 2000]

An automaton with states $A \cup B$ and alphabet X defines a **spinal** group if its edges are of these types

for some epimorphism $\omega: B \to A$ and automorphism $\rho: B \to B$.

$$G = \langle A \cup B \rangle \leq \operatorname{Aut}(X^*)$$

(The definition can be generalized so that, for every d and m, we obtain an uncountable family of groups)

Spinal groups - Examples

Spinal groups - Examples

Infinite dihedral

$$D_{\infty} = \langle a, b \rangle$$

$$d = 2 \qquad \qquad \rho$$

$$m = 1 \quad b \mapsto a \quad b \mapsto b$$

The Fabrykowski-Gupta group

$$d = 3 \qquad b \mapsto a \qquad b \mapsto b$$

$$m = 1 \quad b^2 \mapsto a^2 \quad b^2 \mapsto b^2$$

 $G = \langle a, a^2, b, b^2 \rangle$

Schreier graphs

Schreier graphs - Definition

Definition

Let G be a group, finitely generated by $S = S^{-1}$, acting on a set Y. We define its **Schreier graph** Sch(G, S, Y) as the graph given by

- \bullet V = Y.
- $E = \{(z, sz) \mid z \in Y, s \in S\}.$

The graph is oriented and edge-labeled by the set S.

For spinal groups, we will always consider $S = (A \cup B) \setminus \{1\}$.

7

Schreier graphs - Examples

Grigorchuk's group: $G = \langle a, b, c, d \rangle$

$$d = 2 \qquad m = 2 \qquad \begin{array}{c} \omega & \rho \\ b \mapsto a \\ c \mapsto a \\ c \mapsto a \\ d \mapsto 1 \end{array} \qquad \begin{array}{c} \phi \\ b \mapsto c \\ c \mapsto d \\ d \mapsto b \end{array}$$

$$\Gamma_3 = \mathrm{Sch}(G, S, X^3)$$

Schreier graphs - Examples

The Fabrykowski-Gupta group: $G = \langle a, a^2, b, b^2 \rangle$

d = 3

m = 1

$$\begin{array}{c}
\rho \\
b \mapsto b \\
b^2 \mapsto b^2
\end{array}$$

Schreier graphs - Construction

There is a natural recursive way of constructing $Sch(G, S, X^{n+1})$ from $Sch(G, S, X^n)$ (similar to Bondarenko's inflation of graphs):

$$\forall v_0 \dots v_{n-1} \in X^n \setminus \{(d-1)^{n-1}0\}, \quad \forall i \in X, \quad \forall s \in S,$$
$$s(v_0 \dots v_{n-1}i) = s(v_0 \dots v_{n-1})i$$

Schreier graphs - Construction

The action of G can be extended naturally to the boundary $X^{\mathbb{N}}$ of the tree. Orbits are cofinality classes.

For $\xi \in X^{\mathbb{N}}$, the marked graph $(Sch(G, S, G\xi), \xi)$ is the limit of $(Sch(G, S, X^n), \xi_0 \dots, \xi_{n-1})$ in the space of rooted graphs.

Definition

A sequence of rooted graphs (Γ_n, ν_n) converges to (Γ, ν) if

$$\forall r \in \mathbb{N}, \quad \exists N \in \mathbb{N}, \quad \forall n \geq N, \quad B_{\nu_n}(r) \cong B_{\nu}(r).$$

Schreier graphs - More examples

Grigorchuk's group: $G = \langle a, b, c, d \rangle$

$$d = 2 \qquad m = 2 \qquad \begin{array}{ccc} \omega & \rho \\ b \mapsto a & b \mapsto c \\ c \mapsto a & c \mapsto d \\ d \mapsto 1 & d \mapsto b \end{array}$$

$$\mathsf{Sch}(G,S,0^{\mathbb{N}})$$

Schreier graphs - More examples

The Fabrykowski-Gupta group: $G = \langle a, a^2, b, b^2 \rangle$

d=3

m=1

Schreier graphs - Space of rooted graphs

Let $\mathcal{G}_{S,*}$ be the space of rooted graphs with edge labels in S. We consider the map

$$\mathcal{F}: X^{\mathbb{N}} \to \mathcal{G}_{S,*}$$
$$\xi \mapsto (\Gamma_{\xi}, \xi)$$

Remarks

- \mathcal{F} is injective.
- ${\mathcal F}$ is continuous everywhere except in the orbit of $(d-1)^{\mathbb N}.$
- $\mathcal{F}(X^{\mathbb{N}})$ contains only one and two-ended graphs, but $\overline{\mathcal{F}(X^{\mathbb{N}})}$ contains d-ended graphs as well.
- $\overline{\mathcal{F}(X^{\mathbb{N}})}$ has isolated points iff d=2.
- The growth of Γ_{ξ} is polynomial of degree $\log_2(d)$ [Bondarenko].

Schreier graphs - Limit spaces

Nekrashevych defined a notion of **limit space** \mathcal{J}_G for a contracting (finite nucleus) automata group G.

We can embed the graphs Γ_n in the plane in a way that they approximate \mathcal{J}_G :

Spectral properties - The Markov operator

Definition

Let $\Gamma = (V, E)$ be a k-regular graph.

The Markov operator $M:\ell^2(V)\to\ell^2(V)$ is defined by

$$Mf(v) = \frac{1}{k} \sum_{w \sim v} f(w)$$

In our case:

$$\Gamma_n = \operatorname{Sch}(G, S, X^n) \longrightarrow M_n f(w) = \frac{1}{|S|} \sum_{s \in S} f(s^{-1}w)$$

$$\Gamma_{\xi} = \mathsf{Sch}(G,S,G\xi) \longrightarrow egin{array}{c} M_{\xi}:\ell^2(G\xi)
ightarrow \ell^2(G\xi) \ M_{\xi}f(\eta) = rac{1}{|S|} \sum_{s \in S} f(s^{-1}\eta) \end{array}$$

We can exploit the self-similar nature of spinal groups in order to compute the spectrum of the Markov operator M on Γ_{ξ} .

Theorem [Dixmier '77, Proposition 3.4.9]

$$\operatorname{\mathsf{spec}}(M_\xi) \subset \overline{\bigcup_{n \geq 0} \operatorname{\mathsf{spec}}(M_n)}$$

$$\Gamma_\xi \text{ amenable } \Rightarrow \operatorname{\mathsf{spec}}(M_\xi) = \overline{\bigcup_{n \geq 0} \operatorname{\mathsf{spec}}(M_n)}$$

Notice: spec(M_{ξ}) does not depend on ξ .

Bartholdi and Grigorchuk computed the spectrum for Grigorchuk's group (two intervals), the Fabrykowski-Gupta group (a Cantor set plus a countable set), and other related examples.

We have

$$M_n = \frac{1}{|S|}(A_n + B_n)$$

with

$$A_n = \begin{bmatrix} 0 & 1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix}$$

We use the Schur complement method

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(D - CA^{-1}B)$$

to find a relation between $\operatorname{spec}(M_n)$ and $\operatorname{spec}(M_{n-1})$:

$$z\in \operatorname{spec}(M_n(t))\Longleftrightarrow z'\in \operatorname{spec}(M_{n-1}(t'))$$
 $z'=\Phi_1(t,z),\quad t'=\Phi_2(t,z)$

Solving this recurrence allows to find spec(M_n) explicitly.

Theorem [Grigorchuk, Nagnibeda, P.]

$$\operatorname{spec}(M_n) = \{1, \lambda_0\} \cup \psi^{-1} \left(\bigcup_{k=0}^{n-2} F^{-k}(0) \right)$$

$$\operatorname{spec}(M_{\xi}) = \{1, \lambda_0\} \cup \psi^{-1} \left(\overline{\bigcup_{n \geq 0} F^{-n}(0)} \right)$$

where $F(x) = x^2 - d(d-1)$ and ψ is a quadratic map.

If
$$d=2$$
, $\operatorname{spec}(M_{\xi})=[-\frac{1}{2^{m-1}},0]\cup[1-\frac{1}{2^{m-1}},1].$

If $d \geq 3$, spec (M_{ξ}) is a Cantor set plus a countable set of points.

Notice: spec(M_{ξ}) depends only on d and m.

spec(M_{ξ}) is obtained as the preimage by the quadratic map ψ of the **Julia set** of $F(x) = x^2 - d(d-1)$.

Julia set of $F(x) = x^2 - 2$

Julia set of $F(x) = x^2 - 6$

Mandelbrot set

Spectral properties - Spectral measure

The **empirical spectral measure** ν of $\{\Gamma_n\}_n$ is the weak limit of the counting measures ν_n on Γ_n .

Theorem [Grigorchuk, Nagnibeda, P.]

If d=2, ν is absolutely continuous with respect to the Lebesgue measure.

If $d \geq 3$, ν is concentrated in the set of eigenvalues of M_n .

We may also consider the Markov operator on Cay(G, S), the Cayley graph of G:

$$M_G: \ell^2(G) \rightarrow \ell^2(G)$$
 $M_G f(g) = rac{1}{|S|} \sum_{s \in S} f(s^{-1}g)$

Theorem [Hulanicki]

G amenable \Rightarrow spec $(M_{\xi}) \subset \operatorname{spec}(M_G)$ for every $\xi \in X^{\mathbb{N}}$.

Theorem [Grigorchuk, Dudko; Grigorchuk, Nagnibeda, P.]

If d=2, $\operatorname{spec}(M_{\xi})=\operatorname{spec}(M_G)$ for every $\xi\in X^{\mathbb{N}}$.

Spectral properties - Final remarks

Remark

If d = 2, Cayley and Schreier graphs have the same spectrum.

Corollary

There are uncountably many groups whose spectrum is the union of two intervals.

Corollary

There are uncountably many pairwise non quasi-isometric isospectral groups.

