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Mealy automaton

Given A = (A,Σ, δ, σ) a Mealy automaton.

We extend σ : A∗ × Σ∗ → Σ∗ and δ : A∗ × Σ∗ → A∗.
With :

σu(xy) = σu(x)σδx (u)(y) , for all u ∈ A∗, x , y ∈ Σ∗.

δx (uv) = δx (u)δσu(x)(v) , for all x ∈ Σ∗, u, v ∈ A∗.

σuv = σv ◦ σu , for all u, v ∈ A∗.

δxy = δy ◦ δx , for all x , y ∈ Σ∗.

Set G(A) the group generated by {σu | u ∈ A}.
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Cross diagrams

We use cross-diagrams to simplify notations. For all u ∈ A∗ and
all x ∈ Σ∗.

x

��
u // δx (u)

σu(x)

The previous equalities are summarized by the following cross
diagrams

x

��
u // δx (u)

σu(x)

��
v // δσu(x)(v)

σuv (x)

x

��

y

��
u // δx (u) // δxy (u)

σu(x) σδx (u)(y)
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Grigorchuk’s Group

Grigorchuk’s construted an automaton group G, with nice
properties.

G is a Burnside 2-group.
G is of intermediate growth (neither polynomial, nor
exponential), solving a problem by Milnor.
G is amenable but not elementary amenable (solving a
question by Day)
G is just infinite.
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Undecidability

The word problem is decidable in automaton groups
(Eilenberg’s reduction algorithm).

There is an automaton group with undecidable conjugacy
problem (Šunić and Ventura).
The finiteness problem for reset automaton semigroups is
undecidable (G.).
The freeness problem for automaton semigroups is
undecidable (D’Angeli, Rodaro, and Wächter).
There is an automaton group with undecidable order
problem (G.).
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Computing with automaton groups

Fix a Turing Machine T . Encode it in a cellular automaton
with alphabet T .

The naïve approach... Fails.
Set Σ = (T t {$})× {0,1}.
Set A = {¬} t {a bunch of counters and other states}.
All states will either acts like identity or switch 0 and 1.
¬ will always switch 0 and 1.
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Element of finite order

Set Q(u1 . . . un) = Q(u1 . . . un−1)unQ(u1 . . . un−1).

Theorem
Let a1 . . . an ∈ T ∗. The following statement are equivalent

1 After N steps the configuration a1 . . . an reach a final state.
2 The element σQ(Ca1 ...Can )C$ is of finite order 2N+1.

In particular if the Turing Machine is universal we deduce the
following.

Theorem
There is an Automaton group G such that it is undecidable
whether or not an element is of finite order.
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That is all

Thanks.
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