Undecidability in automaton groups

P. Gillibert

Technische Universität Wien

February 2019

Given $\mathcal{A} = (\mathcal{A}, \Sigma, \delta, \sigma)$ a Mealy automaton.

Given $\mathcal{A} = (\mathbf{A}, \mathbf{\Sigma}, \delta, \sigma)$ a Mealy automaton.

• We extend $\sigma: A^* \times \Sigma^* \to \Sigma^*$ and $\delta: A^* \times \Sigma^* \to A^*$.

Given $\mathcal{A} = (\mathcal{A}, \Sigma, \delta, \sigma)$ a Mealy automaton.

• We extend $\sigma \colon A^* \times \Sigma^* \to \Sigma^*$ and $\delta \colon A^* \times \Sigma^* \to A^*$.

• With :

 $\sigma_u(xy) = \sigma_u(x)\sigma_{\delta_x(u)}(y)$, for all $u \in A^*$, $x, y \in \Sigma^*$.

Given $\mathcal{A} = (\mathcal{A}, \Sigma, \delta, \sigma)$ a Mealy automaton.

• We extend $\sigma \colon A^* \times \Sigma^* \to \Sigma^*$ and $\delta \colon A^* \times \Sigma^* \to A^*$.

• With :

 $\sigma_u(xy) = \sigma_u(x)\sigma_{\delta_x(u)}(y)$, for all $u \in A^*$, $x, y \in \Sigma^*$.

 $\delta_x(uv) = \delta_x(u)\delta_{\sigma_u(x)}(v), \quad \text{for all } x \in \Sigma^*, \, u, v \in A^*.$

Given $\mathcal{A} = (\mathcal{A}, \Sigma, \delta, \sigma)$ a Mealy automaton.

• We extend $\sigma \colon A^* \times \Sigma^* \to \Sigma^*$ and $\delta \colon A^* \times \Sigma^* \to A^*$.

• With :

 $\sigma_u(xy) = \sigma_u(x)\sigma_{\delta_x(u)}(y), \quad \text{for all } u \in A^*, \, x, y \in \Sigma^*.$

$$\delta_x(uv) = \delta_x(u)\delta_{\sigma_u(x)}(v)$$
, for all $x \in \Sigma^*$, $u, v \in A^*$.

$$\sigma_{uv} = \sigma_v \circ \sigma_u$$
, for all $u, v \in A^*$.

Given $\mathcal{A} = (\mathcal{A}, \Sigma, \delta, \sigma)$ a Mealy automaton.

• We extend $\sigma \colon A^* \times \Sigma^* \to \Sigma^*$ and $\delta \colon A^* \times \Sigma^* \to A^*$.

• With :

 $\sigma_u(xy) = \sigma_u(x)\sigma_{\delta_x(u)}(y), \quad \text{for all } u \in A^*, \, x, y \in \Sigma^*.$

$$\delta_x(uv) = \delta_x(u)\delta_{\sigma_u(x)}(v)$$
, for all $x \in \Sigma^*$, $u, v \in A^*$.

$$\sigma_{uv} = \sigma_v \circ \sigma_u$$
, for all $u, v \in A^*$.

$$\delta_{xy} = \delta_y \circ \delta_x$$
, for all $x, y \in \Sigma^*$.

Given $\mathcal{A} = (\mathcal{A}, \Sigma, \delta, \sigma)$ a Mealy automaton.

• We extend $\sigma \colon A^* \times \Sigma^* \to \Sigma^*$ and $\delta \colon A^* \times \Sigma^* \to A^*$.

• With :

 $\sigma_u(xy) = \sigma_u(x)\sigma_{\delta_x(u)}(y)$, for all $u \in A^*$, $x, y \in \Sigma^*$.

$$\delta_x(uv) = \delta_x(u)\delta_{\sigma_u(x)}(v)$$
, for all $x \in \Sigma^*$, $u, v \in A^*$.

$$\sigma_{uv} = \sigma_v \circ \sigma_u$$
, for all $u, v \in A^*$.

$$\delta_{xy} = \delta_y \circ \delta_x$$
, for all $x, y \in \Sigma^*$.

• Set G(A) the group generated by $\{\sigma_u \mid u \in A\}$.

Cross diagrams

We use cross-diagrams to simplify notations. For all $u \in A^*$ and all $x \in \Sigma^*$.

$$u \xrightarrow[\sigma_u(x)]{X} \delta_x(u)$$

Cross diagrams

We use cross-diagrams to simplify notations. For all $u \in A^*$ and all $x \in \Sigma^*$.

The previous equalities are summarized by the following cross diagrams

Cross diagrams

We use cross-diagrams to simplify notations. For all $u \in A^*$ and all $x \in \Sigma^*$.

The previous equalities are summarized by the following cross diagrams

• G is a Burnside 2-group.

- *G* is a Burnside 2-group.
- *G* is of intermediate growth (neither polynomial, nor exponential), solving a problem by Milnor.

- *G* is a Burnside 2-group.
- *G* is of intermediate growth (neither polynomial, nor exponential), solving a problem by Milnor.
- *G* is amenable but not elementary amenable (solving a question by Day)

- *G* is a Burnside 2-group.
- *G* is of intermediate growth (neither polynomial, nor exponential), solving a problem by Milnor.
- *G* is amenable but not elementary amenable (solving a question by Day)
- G is just infinite.

• The word problem is decidable in automaton groups (Eilenberg's reduction algorithm).

- The word problem is decidable in automaton groups (Eilenberg's reduction algorithm).
- There is an automaton group with undecidable conjugacy problem (Šunić and Ventura).

- The word problem is decidable in automaton groups (Eilenberg's reduction algorithm).
- There is an automaton group with undecidable conjugacy problem (Šunić and Ventura).
- The finiteness problem for reset automaton semigroups is undecidable (G.).

- The word problem is decidable in automaton groups (Eilenberg's reduction algorithm).
- There is an automaton group with undecidable conjugacy problem (Šunić and Ventura).
- The finiteness problem for reset automaton semigroups is undecidable (G.).
- The freeness problem for automaton semigroups is undecidable (D'Angeli, Rodaro, and Wächter).

- The word problem is decidable in automaton groups (Eilenberg's reduction algorithm).
- There is an automaton group with undecidable conjugacy problem (Šunić and Ventura).
- The finiteness problem for reset automaton semigroups is undecidable (G.).
- The freeness problem for automaton semigroups is undecidable (D'Angeli, Rodaro, and Wächter).
- There is an automaton group with undecidable order problem (G.).

• Fix a Turing Machine \mathcal{T} . Encode it in a cellular automaton with alphabet \mathcal{T} .

Computing with automaton groups

- Fix a Turing Machine \mathcal{T} . Encode it in a cellular automaton with alphabet \mathcal{T} .
- The naïve approach...

Computing with automaton groups

- Fix a Turing Machine \mathcal{T} . Encode it in a cellular automaton with alphabet \mathcal{T} .
- The naïve approach... Fails.

• Set
$$\Sigma = (T \sqcup \{\}) \times \{0, 1\}.$$

- Fix a Turing Machine \mathcal{T} . Encode it in a cellular automaton with alphabet \mathcal{T} .
- The naïve approach... Fails.

• Set
$$\Sigma = (T \sqcup \{\}) \times \{0, 1\}.$$

• Set $A = \{\neg\} \sqcup \{a \text{ bunch of counters and other states} \}$.

- Fix a Turing Machine \mathcal{T} . Encode it in a cellular automaton with alphabet \mathcal{T} .
- The naïve approach... Fails.

• Set
$$\Sigma = (T \sqcup \{\}) \times \{0, 1\}.$$

- Set $A = \{\neg\} \sqcup \{a \text{ bunch of counters and other states} \}$.
- All states will either acts like identity or switch 0 and 1.
- \neg will always switch 0 and 1.

Set $Q(u_1 ... u_n) = Q(u_1 ... u_{n-1})u_n Q(u_1 ... u_{n-1}).$

Set
$$Q(u_1...u_n) = Q(u_1...u_{n-1})u_nQ(u_1...u_{n-1}).$$

Theorem

Let $a_1 \dots a_n \in T^*$. The following statement are equivalent

• After N steps the configuration $a_1 \dots a_n$ reach a final state.

Set
$$Q(u_1...u_n) = Q(u_1...u_{n-1})u_nQ(u_1...u_{n-1}).$$

Theorem

Let $a_1 \dots a_n \in T^*$. The following statement are equivalent

- After N steps the configuration $a_1 \dots a_n$ reach a final state.
- 2 The element $\sigma_{Q(C^{a_1}...C^{a_n})C^{\$}}$ is of finite order 2^{N+1} .

Set
$$Q(u_1...u_n) = Q(u_1...u_{n-1})u_nQ(u_1...u_{n-1}).$$

Theorem

Let $a_1 \dots a_n \in T^*$. The following statement are equivalent

- After N steps the configuration $a_1 \dots a_n$ reach a final state.
- 2 The element $\sigma_{Q(C^{a_1}...C^{a_n})C^{\$}}$ is of finite order 2^{N+1} .

In particular if the Turing Machine is universal we deduce the following.

Set
$$Q(u_1...u_n) = Q(u_1...u_{n-1})u_nQ(u_1...u_{n-1}).$$

Theorem

Let $a_1 \dots a_n \in T^*$. The following statement are equivalent

- After N steps the configuration $a_1 \dots a_n$ reach a final state.
- 2 The element $\sigma_{Q(C^{a_1}...C^{a_n})C^{\$}}$ is of finite order 2^{N+1} .

In particular if the Turing Machine is universal we deduce the following.

Theorem

There is an Automaton group G such that it is undecidable whether or not an element is of finite order.

Thanks.