Subword complexity and Projection Bodies

Christian Steineder

Technische Universität Wien, Austria

A polytope $ P \subset [0,1)^d$ and an $ \vec \alpha \in [0,1)^d$ induce a generalized Sturmian sequence $ {\bf h }(P,\vec \alpha) \in \{0,1\}^{\mathbb{Z}}$, called Hartman sequence, which is by definition $ 1$ at the $ k$-th position iff $ k \vec \alpha$    mod $ 1 \in P$ and 0 otherwise, $ k \in \mathbb{Z}$. We prove an asymptotic formula for the subword complexity of such a Hartman sequence. This result establishes a connection between symbolic dynamics and convex geometry: If the polytope $ P$ is convex then the asymptotic complexity of $ {\bf h }(P,\vec \alpha)$ equals for almost all $ \vec \alpha \in [0,1)^d$ the volume of the projection body $ \Pi P$ of $ P$.

Supported by FWF project no S9612.