Defects of fixed points of substitutions

P. Ambrož joint work with Ľ. Balková and E. Pelantová

Doppler Institute and Department of Mathematics, FNSPE, Czech Technical University

Journées de Numération

Graz, April 2007

3

Outline

1 Defects in words

- Definitions
- Property Ju
- Necessary condition for the fullness

Beta-numeration

- Definitions and properties
- Beta-substitution
- Palindromes and defects in u_{β}

Palindromes and defects in general

- Known results
- Conjecture of Hof, Knill and Simon

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

- An infinite word is said to be full if all its prefixes are full.

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

- An infinite word is said to be full if all its prefixes are full.

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

 $0100:\varepsilon$ 0120:

- An infinite word is said to be full if all its prefixes are full.

イロト 人間ト イヨト イヨト

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

0100 : ε. **0** 0120:

- An infinite word is said to be full if all its prefixes are full.

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

 $0100 : \varepsilon, 0, 1$ 0120:

- An infinite word is said to be full if all its prefixes are full.

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

0100 : ε , 0, 1, 010 0120:

- An infinite word is said to be full if all its prefixes are full.

- ロ ト - (同 ト - (回 ト -)

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

0100 : ε, 0, 1, 010, 00 0120 :

Definition

- A finite word with zero defect is called full.
- An infinite word is said to be full if all its prefixes are full.

- ロ ト - (同 ト - (回 ト -)

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

```
0100 : \varepsilon, 0, 1, 010, 00 ... has defect 0
0120 :
```

Definition

- A finite word with zero defect is called full.
- An infinite word is said to be full if all its prefixes are full.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

0100 : ε , 0, 1, 010, 00 ... has defect 0 0120 : ε

Definition

- A finite word with zero defect is called full.
- An infinite word is said to be full if all its prefixes are full.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

0100 : ε , 0, 1, 010, 00 ... has defect 0 0120 : ε , 0

Definition

- A finite word with zero defect is called full.
- An infinite word is said to be full if all its prefixes are full.

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

 $0100 : \varepsilon, 0, 1, 010, 00$... has defect 0 $0120 : \varepsilon$. 0. 1

- An infinite word is said to be full if all its prefixes are full.

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

 $0100 : \varepsilon, 0, 1, 010, 00$... has defect 0 $0120 : \varepsilon, 0, 1, 2$

- An infinite word is said to be full if all its prefixes are full.

ヘロト 人間 とくほとく ヨトー

[Droubay et al.] Every finite word w contains at most |w| + 1palindromes.

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

 $0100 : \varepsilon, 0, 1, 010, 00$... has defect 0 $0120 : \varepsilon$, 0, 1, 2 ... has defect 1

- An infinite word is said to be full if all its prefixes are full.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

The difference between |w| + 1 and the actual number of palindromes is called defect.

Example

Definition

- A finite word with zero defect is called full.
- An infinite word is said to be full if all its prefixes are full.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

A finite word w satisfies the Property Ju if its longest palindromic suffix occurs exactly once in w.

Proposition (Droubay, Justin, Pirillo)

A finite word is full if and only if each its prefix satisfies Ju.

Known results

- Sturmian words are full
- Episturmian words are full

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A finite word w satisfies the Property Ju if its longest palindromic suffix occurs exactly once in w.

Proposition (Droubay, Justin, Pirillo)

A finite word is full if and only if each its prefix satisfies Ju.

Known results

- Sturmian words are full
- Episturmian words are full

Definition

A finite word w satisfies the Property Ju if its longest palindromic suffix occurs exactly once in w.

Proposition (Droubay, Justin, Pirillo)

A finite word is full if and only if each its prefix satisfies Ju.

Known results

- Sturmian words are full
- Episturmian words are full

Definition

A finite word w satisfies the Property Ju if its longest palindromic suffix occurs exactly once in w.

Proposition (Droubay, Justin, Pirillo)

A finite word is full if and only if each its prefix satisfies Ju.

Known results

- Sturmian words are full
- Episturmian words are full

Defects in words Necessary condition

N.C.: If an infinite word is full then it contains an infinite number of palindromes.

Lemma (A., Frougny, Masáková, Pelantová)

If an infinite uniformly recurrent word contains an infinite number of palindromes then its language is closed under reversal.

• The language of an infinite word is the set of all its factors.

• A language is closed under reversal if with every word $w_1 \cdots w_k$ it contains also $w_k \cdots w_1$.

Remark. Berstel et al. gave an example showing that the converse of the lemma is not true.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Defects in words Necessary condition

N.C.: If an infinite word is full then it contains an infinite number of palindromes.

Lemma (A., Frougny, Masáková, Pelantová)

If an infinite uniformly recurrent word contains an infinite number of palindromes then its language is closed under reversal.

• The language of an infinite word is the set of all its factors.

 A language is closed under reversal if with every word w₁ ··· w_k it contains also w_k ··· w₁.

Remark. Berstel et al. gave an example showing that the converse of the lemma is not true.

イロト 不得 トイヨト イヨト

N.C.: If an infinite word is full then it contains an infinite number of palindromes.

Lemma (A., Frougny, Masáková, Pelantová)

If an infinite uniformly recurrent word contains an infinite number of palindromes then its language is closed under reversal.

- The language of an infinite word is the set of all its factors.
- A language is closed under reversal if with every word $w_1 \cdots w_k$ it contains also $w_k \cdots w_1$.

Remark. Berstel et al. gave an example showing that the converse of the lemma is not true.

イロト 不得 トイヨト イヨト

N.C.: If an infinite word is full then it contains an infinite number of palindromes.

Lemma (A., Frougny, Masáková, Pelantová)

If an infinite uniformly recurrent word contains an infinite number of palindromes then its language is closed under reversal.

- The language of an infinite word is the set of all its factors.
- A language is closed under reversal if with every word $w_1 \cdots w_k$ it contains also $w_k \cdots w_1$.

Remark. Berstel et al. gave an example showing that the converse of the lemma is not true.

イロト 不得 トイヨト イヨト 二日

Beta-transformation $T_{\beta} : [0,1) \to [0,1)$ given by $T_{\beta}(x) := \beta x \pmod{1}$.

Definition

Rényi expansion of $1 d_{\beta}(1) = (t_i)_i \ge 1$, where $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$.

If d_β(1) is eventually periodic, β is called Parry number
If d_β(1) is finite, β is called simple Parry number

Remark. $d_{\beta}(1)$ can be used to characterize expansions in β -numeration system.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Beta-transformation $T_{\beta} : [0,1) \to [0,1)$ given by $T_{\beta}(x) := \beta x \pmod{1}$.

Definition

Rényi expansion of
$$1 d_{\beta}(1) = (t_i)_i \ge 1$$
, where $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$.

If d_β(1) is eventually periodic, β is called Parry number
If d_β(1) is finite, β is called simple Parry number

Remark. $d_{\beta}(1)$ can be used to characterize expansions in β -numeration system.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Beta-transformation $T_{\beta} : [0,1) \to [0,1)$ given by $T_{\beta}(x) := \beta x \pmod{1}$.

Definition

Rényi expansion of
$$1 d_{\beta}(1) = (t_i)_i \ge 1$$
, where $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$.

If d_β(1) is eventually periodic, β is called Parry number
If d_β(1) is finite, β is called simple Parry number

Remark. $d_{\beta}(1)$ can be used to characterize expansions in β -numeration system.

(日) (圖) (E) (E) (E)

Beta-transformation $T_{\beta} : [0,1) \to [0,1)$ given by $T_{\beta}(x) := \beta x \pmod{1}$.

Definition

Rényi expansion of
$$1 d_{\beta}(1) = (t_i)_i \ge 1$$
, where $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$.

- If $d_{\beta}(1)$ is eventually periodic, β is called Parry number
- If $d_{eta}(1)$ is finite, eta is called simple Parry number

Remark. $d_{\beta}(1)$ can be used to characterize expansions in β -numeration system.

Beta-transformation $T_{\beta} : [0,1) \to [0,1)$ given by $T_{\beta}(x) := \beta x \pmod{1}$.

Definition

Rényi expansion of
$$1 d_{\beta}(1) = (t_i)_i \ge 1$$
, where $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$.

- If $d_{\beta}(1)$ is eventually periodic, β is called Parry number
- If $d_{\beta}(1)$ is finite, β is called simple Parry number

Remark. $d_{\beta}(1)$ can be used to characterize expansions in β -numeration system.

Beta-expansions Beta-substitution

With each $\beta > 1$ one can associate an infinite word u_{β} , coding distances between β -integers in the associated β -numeration system.

of the β -substitution φ_{β} .

(日) (圖) (E) (E) (E)

With each $\beta > 1$ one can associate an infinite word u_{β} , coding distances between β -integers in the associated β -numeration system.

 u_{β} can be obtained as the unique fixed point $u_{\beta} = \lim_{n \to \infty} \varphi_{\beta}^{n}(0)$ of the β -substitution φ_{β} .

With each $\beta > 1$ one can associate an infinite word u_{β} , coding distances between β -integers in the associated β -numeration system.

 u_{β} can be obtained as the unique fixed point $u_{\beta} = \lim_{n \to \infty} \varphi_{\beta}^{n}(0)$ of the β -substitution φ_{β} .

Simple Parry case, $d_{\beta}(1) = t_1 \cdots t_m$ $arphi_eta(0)=0^{t_1}1 \ arphi_eta(1)=0^{t_2}2$ $\varphi_{\beta}(m-2) = 0^{t_{m-1}}(m-1)$ $\varphi_{\beta}(m-1) = 0^{t_m}$

ヘロア 人間ア 人間ア 人間ア

With each $\beta > 1$ one can associate an infinite word u_{β} , coding distances between β -integers in the associated β -numeration system.

 u_{β} can be obtained as the unique fixed point $u_{\beta} = \lim_{n \to \infty} \varphi_{\beta}^{n}(0)$ of the β -substitution φ_{β} .

Non-simple Parry case, $d_{\beta}(1) = t_1 \cdots t_m(t_{m+1} \cdots t_{m+p})$

$$arphi_eta(0)=0^{t_1}1$$

 $dots$
 $arphi_eta(m+p-2)=0^{t_{m+p-1}}(m+p-1)$
 $arphi_eta(m+p-1)=0^{t_{m+p}}(m)$

The language of u_{β} is closed under reversal if and only if

- $d_{\beta}(1) = t \cdots ts = t^k s$ for simple Parry number β ,
- $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Simple Parry, $\mathrm{d}_{eta}(1)=t^ks)$

- A factor p of u_{β} is a palindrome iff $\varphi(p)0^t$ is a palindrome.
- For every palindrome p (not equal to 0^r, r ≤ t), there exists a unique shorter palindrome q such that p occurs only as a central factor of φ(q)0^t.

(日) (圖) (E) (E) (E)

The language of u_{β} is closed under reversal if and only if

- $d_{\beta}(1) = t \cdots ts = t^k s$ for simple Parry number β ,
- $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Simple Parry, $d_{\beta}(1) = t^k s$)

- A factor p of u_{β} is a palindrome iff $\varphi(p)0^t$ is a palindrome.
- For every palindrome p (not equal to 0^r, r ≤ t), there exists a unique shorter palindrome q such that p occurs only as a central factor of φ(q)0^t.

(日) (圖) (E) (E) (E)

The language of u_{β} is closed under reversal if and only if

- $d_{\beta}(1) = t \cdots ts = t^k s$ for simple Parry number β ,
- $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Simple Parry, $d_{\beta}(1) = t^k s$)

- A factor p of u_{β} is a palindrome iff $\varphi(p)0^t$ is a palindrome.
- For every palindrome p (not equal to 0^r, r ≤ t), there exists a unique shorter palindrome q such that p occurs only as a central factor of φ(q)0^t.

The language of u_{β} is closed under reversal if and only if

•
$$d_{\beta}(1) = t \cdots ts = t^k s$$
 for simple Parry number β ,

• $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Simple Parry, $d_{\beta}(1) = t^k s$)

- A factor p of u_{β} is a palindrome iff $\varphi(p)0^t$ is a palindrome.
- For every palindrome p (not equal to 0^r, r ≤ t), there exists a unique shorter palindrome q such that p occurs only as a central factor of φ(q)0^t.

The language of u_{β} is closed under reversal if and only if

•
$$d_{\beta}(1) = t \cdots ts = t^k s$$
 for simple Parry number β ,

• $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Simple Parry, $d_{\beta}(1) = t^k s$)

- A factor p of u_{β} is a palindrome iff $\varphi(p)0^t$ is a palindrome.
- For every palindrome p (not equal to 0^r, r ≤ t), there exists a unique shorter palindrome q such that p occurs only as a central factor of φ(q)0^t.

ヘロト 人間 とくほ とくほ とう

The language of u_{β} is closed under reversal if and only if

- $d_{\beta}(1) = t \cdots ts = t^k s$ for simple Parry number β ,
- $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Non-simple Parry, $d_{\beta}(1) = ts^{\omega}$)

• A factor p of u_{β} is a palindrome iff $1\varphi(p)$ is a palindrome

• For every palindrome p (containing at least one letter 1), there exists a unique shorter palindrome q such that p occurs only as a central factor of $1\varphi(q)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへで

The language of u_{β} is closed under reversal if and only if

•
$$d_{\beta}(1) = t \cdots ts = t^k s$$
 for simple Parry number β ,

• $d_{\beta}(1) = ts^{\omega}$ for non-simple Parry number β .

Lemma (Non-simple Parry, $d_{\beta}(1) = ts^{\omega}$)

- A factor p of u_{β} is a palindrome iff $1\varphi(p)$ is a palindrome
- For every palindrome p (containing at least one letter 1), there exists a unique shorter palindrome q such that p occurs only as a central factor of $1\varphi(q)$.

Theorem

 u_{β} is full both in the simple and non-simple Parry case.

Proof. (non-simple case)

• v be the shortest prefix of u_{β} not satisfying Ju, *i.e.* its longest palindromic suffix occurs at least twice

$$u_{\beta} = v \cdots = u p w p \cdots$$

 by Lemma, p occurs only as a central factor of 1φ(q), q palindrome, |q| < |p|

$$u_{eta} = v \cdots = \varphi(\hat{u}q\hat{w}q) \cdots$$

• *ûqŵq* is prefix containing twice its longest palindromic suffix *q*

イロト 不得 トイヨト イヨト

Theorem

 u_{β} is full both in the simple and non-simple Parry case.

Proof. (non-simple case)

• v be the shortest prefix of u_{β} not satisfying Ju, *i.e.* its longest palindromic suffix occurs at least twice

$$u_{\beta} = v \cdots = u p w p \cdots$$

 by Lemma, p occurs only as a central factor of 1φ(q), q palindrome, |q| < |p|

$$u_{eta} = v \cdots = \varphi(\hat{u}q\hat{w}q) \cdots$$

• *ûqŵq* is prefix containing twice its longest palindromic suffix *q*

Theorem

 u_{β} is full both in the simple and non-simple Parry case.

Proof. (non-simple case)

• v be the shortest prefix of u_{β} not satisfying Ju, *i.e.* its longest palindromic suffix occurs at least twice

$$u_{\beta} = v \cdots = u p w p \cdots$$

• by Lemma, p occurs only as a central factor of $1 \varphi(q)$, q palindrome, |q| < |p|

$$u_{\beta} = \mathbf{v} \cdots = \varphi(\hat{u}q\hat{w}q)\cdots$$

• *ûqŵq* is prefix containing twice its longest palindromic suffix q

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

 u_{β} is full both in the simple and non-simple Parry case.

Proof. (non-simple case)

• v be the shortest prefix of u_{β} not satisfying Ju, *i.e.* its longest palindromic suffix occurs at least twice

$$u_{\beta} = v \cdots = u p w p \cdots$$

• by Lemma, p occurs only as a central factor of $1 \varphi(q)$, q palindrome, |q| < |p|

$$u_{eta} = \mathbf{v} \cdots = \varphi(\hat{u}q\hat{w}q) \cdots$$

• $\hat{u}q\hat{w}q$ is prefix containing twice its longest palindromic suffix q

・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Palindromes and defects in general Results

Similar techniques as for u_{β} works also for

- Period doubling word, fixed point of $\varphi(0) = 01$, $\varphi(1) = 00$
- Rote word, foxed point $\varphi(0) = 001$, $\varphi(1) = 111$

Not everything is full!

- Thue-Morse word contains an infinite number of palindromes
- It has the "nice properties" similar to lemmas,

Palindromes and defects in general Results

Similar techniques as for u_{β} works also for

- Period doubling word, fixed point of $\varphi(0) = 01$, $\varphi(1) = 00$
- Rote word, foxed point $\varphi(0) = 001$, $\varphi(1) = 111$

Not everything is full!

- Thue-Morse word contains an infinite number of palindromes
- It has the "nice properties" similar to lemmas,

Palindromes and defects in general Results

Similar techniques as for u_{β} works also for

- Period doubling word, fixed point of $\varphi(0)=01, \ \varphi(1)=00$
- Rote word, foxed point arphi(0)= 001, arphi(1)= 111

Not everything is full!

Thue-Morse word, fixed point of arphi(0)=01, arphi(1)=10

 $u_T = 011010011|0010110\cdots$

Note that

- Thue-Morse word contains an infinite number of palindromes
- It has the "nice properties" similar to lemmas,
 e.g. p ∈ Pal(u_{TM}) ⇔ φ²(p) ∈ Pal(u_{TM})

Palindromes and defects in general Results

Similar techniques as for u_{β} works also for

- Period doubling word, fixed point of $\varphi(0) = 01$, $\varphi(1) = 00$
- Rote word, foxed point $\varphi(0) = 001$, $\varphi(1) = 111$

Not everything is full!

Thue-Morse word, fixed point of $\varphi(0) = 01$, $\varphi(1) = 10$

 $u_T = 011010011|0010110\cdots$

Note that

• Thue-Morse word contains an infinite number of palindromes

It has the "nice properties" similar to lemmas.

Palindromes and defects in general Results

Similar techniques as for u_{eta} works also for

- Period doubling word, fixed point of $\varphi(0)=01, \ \varphi(1)=00$
- Rote word, foxed point arphi(0)= 001, arphi(1)= 111

Not everything is full!

Thue-Morse word, fixed point of $\varphi(0)=$ 01, $\varphi(1)=$ 10

 $u_T = 011010011|0010110\cdots$

Note that

- Thue-Morse word contains an infinite number of palindromes
- It has the "nice properties" similar to lemmas,
 e.g. p ∈ Pal(u_{TM}) ⇔ φ²(p) ∈ Pal(u_{TM})

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへで

Palindromes and defects in general Results

Similar techniques as for u_{β} works also for

- Period doubling word, fixed point of $\varphi(0) = 01$, $\varphi(1) = 00$
- Rote word, foxed point $\varphi(0) = 001$, $\varphi(1) = 111$

Theorem (Brlek et al.) Let w = uv, |u| > |v|, u, v palindromes. Then the defect of w^{ω} is bounded by the defect of its prefix of length $|uv| + \left| \frac{|u| - |v|}{3} \right|$.

< 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Palindromes and defects Infinite number of palindromes

Conjecture (Hof, Knill, Simon)

If a uniformly recurrent word u, fixed point of a morphism, contains infinitely many palindromes then there exist a morphism φ , a palindrome pand palindromes q_a such that u is a fixed point of φ and for every letter aone has

$$arphi(\mathsf{a}) = \mathsf{p}\mathsf{q}_\mathsf{a}$$
 .

Remark.

- Conjecture holds for periodic words by result of Brlek et al.
- Allouche et al.: while proving the conjecture, one can restrict himself to the class of substitutions

$$\varphi(a) = pq_a$$
, where $|p| = 0$ or $|p| = 1$.

(4 間) トイヨト イヨト

Palindromes and defects Infinite number of palindromes

Conjecture (Hof, Knill, Simon)

If a uniformly recurrent word u, fixed point of a morphism, contains infinitely many palindromes then there exist a morphism φ , a palindrome pand palindromes q_a such that u is a fixed point of φ and for every letter aone has

$$arphi(\mathsf{a}) = \mathsf{p}\mathsf{q}_\mathsf{a}$$
 .

Remark.

• Conjecture holds for periodic words by result of Brlek et al.

• Allouche et al.: while proving the conjecture, one can restrict himself to the class of substitutions

$$\varphi(a) = pq_a$$
, where $|p| = 0$ or $|p| = 1$.

(4 間) トイヨト イヨト

Palindromes and defects Infinite number of palindromes

Conjecture (Hof, Knill, Simon)

If a uniformly recurrent word u, fixed point of a morphism, contains infinitely many palindromes then there exist a morphism φ , a palindrome pand palindromes q_a such that u is a fixed point of φ and for every letter aone has

$$arphi(\mathsf{a}) = \mathsf{p}\mathsf{q}_\mathsf{a}$$
 .

Remark.

- Conjecture holds for periodic words by result of Brlek et al.
- Allouche et al.: while proving the conjecture, one can restrict himself to the class of substitutions

$$\varphi(a) = pq_a$$
, where $|p| = 0$ or $|p| = 1$.