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Computer Arithmetic

Compromise:

I Speed
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I Cost

Heart:

I Number
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I Associated
algorithms

Approaches:

I Theory
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I Hardware
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Function Evaluation

Function Evaluation
an example of numeration
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Function Evaluation

Briggs Algorithm (1561-1630)

I Evaluation of the logarithm, constructions of the first tables
(15 decimal digits, 1624).

I In radix 2: digits dk = −1, 0, 1, such that for a given x we
have

x
n∏

k=1

(1 + dk2−k) ' 1

I The logarithm of x is

ln(x) ' −
n∑

k=1

ln(1 + dk2−k)
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Function Evaluation

CORDIC Algorithm (COrdinate Rotation DIgital
Computer, VOLDER 1959)

Basic step dn ∈ {−1, 1} (sign of z).


xn+1 = xn − dnyn2

−n

yn+1 = yn + dnxn2
−n

zn+1 = zn − dn arctan(2−n)

For cosine and sine:
x0 = 1, y0 = 0, z0 = θ(=

∑
n≥0 dn arctan(2−n))

Constant factor

K =
∏∞

n=0

√
1 + 2−2n = 1.646760...

θ

K  cos

K  sinθ

θ
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Function Evaluation

Complex algorithm (BKM 1993)

Basic step of the complex algorithm:{
Ek+1 = Ek(1 + dk2−k)
Lk+1 = Lk − ln(1 + dk2−k)

with dk = d r
k + id i

k , and d r
k , d i

k = −1, 0, 1.
Two evaluation modes

I L-mode :
En → 1
Ln → L1 + ln(E1)

I E-mode :
Ln → 0
En → E1e

L1

26 12
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Function Evaluation

1

E1
=

n∏
i=1

(1 + di2
−i )→ Ln = −

n∑
i=1

ln(1 + di2
−i ) = ln(E1)
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Redundant Number Systems

Redundant Number Systems
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Redundant Number Systems

Avizienis (1961)

I Redundant Number Systems
Signed digits: xi ∈ {−a, . . . , −1, 0, 1, . . . , a} Radix β with
a ≤ β − 1.

I Properties
I If 2a+1 ≥ β, then each integer has at least one representation.

An integer X , with −aβn−1
β−1 ≤ X < aβn−1

β−1 , admits a unique
representation

X =
n−1∑
i=0

xiβ
i with xi ∈ {−a, · · · − 1, 0, 1, . . . , a}

I If 2a ≥ β + 1, then we have a carry free algorithm. 25

I Borrow-save (Duprat, Muller 1989): extension to radix 2.
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Redundant Number Systems

Example: radix 10, a = 9

235942 (= −164138)
+ 46167 (= 46047)

011110 (= t)
271001 (= w)

282111 (= s = −118091)
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Redundant Number Systems

Properties of the signed digits redundant systems

I Advantages:
I Constant time carry-free addition
I Large radix: parallelisation
I Small radix: fast circuits
I Increasing of the performances of the algorithms based on the

addition 7

I Drawbacks: comparisons, sign...
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Redundant Number Systems

Non-Adjacent Form

I This representation is inspired from Booth recoding (1951)
used in multipliers.

I Definition of NAFw recoding: (Reitwiesner 1960) Let k be
an integer and w ≥ 2. The non-adjacent form of weight w of

k is given by k =
l−1∑
i=0

ki2
i where |ki | < 2w−1, kl−1 6= 0 and

each w -bit word contains at most one non-zero digit.

1. For a given k, NAFw (k) is unique.

2. For a given w ≥ 2, the length of NAFw (k) is at most equal to
the length of k plus one.

3. The average density of non-zero digits is 1/(w + 1).

27 28
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Redundant Number Systems

NAFw Examples

We consider k = 31415592.

k2 = 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0
NAF2(k) = 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0
NAF3(k) = 1 0 0 0 1 0 0 0 0 1 0 0 3 0 0 0 1 0 0 3 0 0 3 0 0 0
NAF4(k) = 1 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0 3 0 0 0 0 5 0 0 0
NAF5(k) = 15 0 0 0 0 0 0 0 5 0 0 0 0 3 0 0 0 0 5 0 0 0
NAF6(k) = 15 0 0 0 0 0 1 0 0 0 0 0 17 0 0 0 0 0 27 0 0 0
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Number Systems for Modular Arithmetic

Number Systems for Modular Arithmetic
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Number Systems for Modular Arithmetic

Lattices and Modular Systems

I Number system: radix β and a set of digits {0, ..., β − 1}.

0 ≤ A < βn is expanded as: A =
n−1∑
i=0

aiβ
i .

I We denote by P the modulo, with P < βn,

βn (mod P) =
n−1∑
i=0

εiβ
i with εi ∈ {0, ..., β − 1}

I A modular operation (for example: a modular multiplication):

1. Polynomial operation: W (X ) = A(X )
⊗

B(X )

2. Polynomial reduction : V (X ) = W (X ) mod (X n −
n−1∑
i=0

εiX
i )

3. Coefficient reduction : M(X ) = Reductcoeff(V (X ))
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Number Systems for Modular Arithmetic

Lattices and Modular Systems
Lattice approach

In a classical system ”Reductcoeff” is equivalent to a combination
of the carry propagation and the modular reduction:

−β 1 ... 0 0
0 −β ... 0 0
...

...
...

...
...

0 0 ... −β 1
P 0 ... 0 0


← lattice

sublattice→


−β 1 ... 0 0
0 −β ... 0 0
...

...
...

...
...

0 0 ... −β 1
ε0 ε1 ... εn−2 (εn−1 − β)
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Number Systems for Modular Arithmetic

Lattices and Modular Systems
Example

For P = 97 and β = 10, we have 102 ≡ 3 (mod P). We consider
the lattice: (

B0

B1

)
=

(
−10 1
3 −10

)
Let V (25, 12) = 25 + 12β.

For reducing V , we determine G (17, 8) = −2B0 − B1 a vector of
the lattice close to V .

Thus , V (25, 12) ≡ M(8, 4) = V (25, 12)− G (17, 8).
We verify that 25 + 120 = 145 ≡ 48 (mod 97)
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Number Systems for Modular Arithmetic

Lattices and Modular Systems
Example

The reduction is equivalent with finding a close vector.
Let G (X ) be this vector, then M(X ) = V (x)− G (X )

P = 97 β = 10

G

q
q q

q q
q q

q q
q q

q q
q qq q

q q
q q

q q

a
a

V(25,12)

M

q
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Number Systems for Modular Arithmetic

Lattices and Modular Systems
A new system

I Polynomial reduction depends of the representation of βn

(mod P)

I In Thomas Plantard’s PhD (2005), β can be as large as P,
but with a set of digits {0, ..., ρ− 1} where ρ is small.

Example: Let us consider a MNS defined with
P = 17, n = 3, β = 7, ρ = 2. Over this system, we represent the
elements of Z17 as polynomials in β, of degree at most 2, with
coefficients in {−1, 0, 1}
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Number Systems for Modular Arithmetic

Lattices and Modular Systems
A new system

0 1 2 3 4 5

0 1 −β2 1− β2 −1 + β + β2 β + β2

6 7 8 9 10 11

−1 + β β 1 + β −1− β −β 1− β

12 13 14 15 16

−β − β2 1− β − β2 −1 + β2 β2 1 + β2

The system is clearly redundant.
For example: 6 = 1 + β + β2 = −1 + β, or
9 = 1− β + β2 = −1− β.
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Number Systems for Modular Arithmetic

Lattices and Modular Systems
Construction of Plantard Systems

I In a first approach, n and ρ = 2k are fixed. The lattice is
constructed from the representation of ρ in the number
system. P and β are deduced. Efficient algorithm for finding a
close vector. 31

I In a general approach, where P, β and n are given, the
determination of ρ is obtained by reducing with LLL (Lenstra
Lenstra Lovasz, 1982). No efficient algorithm for finding a
close vector. 29
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Conclusion

Conclusion

Thank you!
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Annexes

Annexes
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Annexes

Annexe: Avizienis Algorithm 10

I We note S = X + Y with
X = xn−1...x0

Y = yn−1...y0

S = sn...s0
I Step 1: For i = 1 to n in parallel,

ti+1 = 1 if, xi + yi < −a + 1

1 if, xi + yi > a− 1

0 if, − a + 1 ≤ xi + yi ≤ a− 1

and wi = xi + yi − β ∗ ti+1

with wn = t0 = 0

I Step 2: for i = 0 to n in parallel,

si = wi + ti
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Annexes

Annexe: Functions computable using one mode of BKM 7
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0

0

0

bea

0

0

cos θ

sin θ

0

0θ

1 a

0

b

θ 0

0

a

0

0

0 0

0

1

ln a

a

b

0

0

1

0

arctan b
a

ln
√

a2 + b2

c

d

( c
d ) =

(
cos θ − sin θ
sin θ cos θ

)
( a
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Annexes

Annexe: NAFw Computing 13
Data: Two integers k ≥ 0 and w ≥ 2.
Result: NAFw (k) = (kl−1kl−2 . . . k1k0).
l ← 0;
while k ≥ 1 do

if k is odd then
kl ← k mod 2w ;
if kl > 2w−1 then

kl ← kl − 2w ;
end
k ← k − kl ;

else
kl ← 0;

end
k ← k/2, l ← l + 1;

end
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Annexes

Annexe: Double and Add with NAFw 13
Data: P ∈ E , k =∈ N et w ≥ 2, NAFw (k) = (kl−1kl−2 . . . k1k0)

Pi = [i ]P pour i ∈ {1, 3, 5, . . . , 2w−1 − 1}
Result: Q = [k]P ∈ E .
begin

Q ← Pkl−1
;

pour i = l − 2 . . . 0 faire
Q ← [2]Q;
si ki 6= 0 alors

si ki > 0 alors
Q ← Q + Pki

;
sinon

Q ← Q − P−ki

fin

fin

fin

end
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Annexes

Lattices and Modular Systems
Annexe: Examples of Plantard System 22

Example1: P = 53, n = 7, β = 14, ρ = 2.
We have β7 ≡ 2 (mod P). In this number system, integers have at
least two representations, the total number of representations is
128.
The lattice could be defined by (vectors in row):

V1

V2

V3

V4

V5

V6

V7


=



−14 1 0 0 0 0 0 0
0 −14 1 0 0 0 0 0
0 0 −14 1 0 0 0 0
0 0 0 −14 1 0 0 0
0 0 0 0 −14 1 0 0
0 0 0 0 0 −14 1 0
0 0 0 0 0 0 −14 1
53 0 0 0 0 0 0 0
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Annexes

Lattices and Modular Systems
Annexe: Examples of Plantard System 22

We can remark that there is a short vector : (1, 1, 0, 0, 0, 0, 1) =
V6 + 14 ∗V5 + 142 ∗V4 + 143 ∗V3 + 144 ∗V2 + (145 + 1) ∗V1 + V7.
From this vector we can construct a reduced basis of a sublattice,
using that: β7 ≡ 2 (mod P)

1 1 0 0 0 0 0 1
2 1 1 0 0 0 0 0
0 2 1 1 0 0 0 0
0 0 2 1 1 0 0 0
0 0 0 2 1 1 0 0
0 0 0 0 2 1 1 0
0 0 0 0 0 2 1 1
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Annexes

Lattices and Modular Systems
Annexe: Examples of Plantard System 22

Example #2: This example is proposed in PhD of Thomas
Plantard. He gives some conditions that number system must
verify: β8 ≡ 2 (mod P) and ρ = 232.
P is the determined:
P = 1157920890216366222621247151603347568778042
45386980633020041035952359812890593
Then β is deduced
β = 144740111277045777827655893952245323141792170589
21488395049827733759590399996
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