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β-expansion and β-integers

• Let β > 1 and x ≥ 0, any series x =
∑k

i=−∞
xiβ

i, xi ∈ N0,

is called a β-representation of x and denoted
xkxk−1...x0 • x−1....
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∣ 〈|x|〉β = xkxk−1... x0•}.

• Fin(β) is the set of real numbers x whose β-expansion of
|x| is finite.

• Zβ is not closed under addition for β 6∈ N!

• Fin(β) does not form a subring of R in general! (Finiteness
property)
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fpβ(x)= min{l ∈ N0

∣

∣ βlx ∈ Zβ}.

• It may happen for x, y ∈ Fin(β) that the sum x + y 6∈ Fin(β).

• L⊕(β) is the lowest upper bound on fpβ(x + y), where
x, y ∈ Zβ and x + y ∈ Fin(β)

• Formally written L⊕(β) =

min{L ∈ N0

∣

∣ x, y ∈ Zβ, x + y ∈ Fin(β) ⇒ fpβ(x + y) ≤ L}

if the set is not empty, otherwise L⊕(β) := +∞.

Journées de Numération, Graz – p.5



Outline of the talk

• Terminology of arithmetics on β-integers Zβ

• Non-simple quadratic Parry numbers
• Known facts about arithmetics on Zβ

• Improvement of the upper bound on L⊕(β)

• Infinite word uβ associated with β-integers

• Known facts on balance property of infinite words
• Balance property of uβ

• Deduction of the lower bound on L⊕(β) using the balance
property of uβ

Journées de Numération, Graz – p.6
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∑

∞

i=1
ti+k

βi .

• {∆k

∣

∣ k ∈ N0} is finite ⇔ dβ(1) is eventually periodic.

• If dβ(1) is eventually periodic, β is called a Parry number.

• If dβ(1) is finite, β is called a simple Parry number.
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Improvement of the upper bound on L⊕(β)
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• Parry condition: dβ(1) = pqω, p − 1 > q ≥ 1

xkxk−1 . . . x0 • x−1 . . . is a β-expansion if and only if

xixi−1 · · · ≺ pqω for all i ≤ k

• Any finite β-representation can be transformed to the
β-expansion, which is also finite!
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Subtraction of positive elements

• Fin(β) is not closed under subtraction, e.g.,
〈β − 1〉β = (p − 1) • qω

• Let x ≥ y ≥ 0 and x, y ∈ Zβ ,
◦ then x − y ∈ Zβ

◦ or x − y 6∈ Fin(β).

• Subtraction of positive elements does not raise L⊕(β).
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If all digits in 〈y〉β are ≤ q,
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◦ or 〈x + y〉β = z • (p − q).

• Any y can be written as y(1) + · · · + y(k), with k ≤ ⌈p
q
⌉ and

with digits of 〈y(j)〉β ≤ q.

• There exists ε ∈ {0, . . . , ⌈p
q
⌉} such that x + y ∈ Zβ + εp−q

β
.

• Theorem: Let dβ(1) = pqω, p − 1 > q ≥ 1, then

L⊕(β) ≤ ⌈
p

q
⌉.
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• For dβ(1) = pqω, two distances between neighbors in Z
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∆0 = 1 and ∆1 = 1 −
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Infinite word uβ associated with β-integers

• For dβ(1) = pqω, two distances between neighbors in Z
+
β :

∆0 = 1 and ∆1 = 1 −
p − q

β

• Fabre: Associate ∆0 → A and ∆1 → B, you get
a right-sided infinite word uβ , fixed point of the substitution

ϕ(A) = ApB, ϕ(B) = AqB
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Balance property

• An infinite word u over A is c-balanced if for all a ∈ A and
for any two factors w, v of u of the same length

||w|a − |v|a| ≤ c
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1-balanced.

◦ Adamczewski: u fixed point of a primitive substitution
with Perron eigenvalue λ and all the other eigenvalues in
modulus < 1, then u is c-balanced for some constant c.

◦ Turek: The lowest possible c for uβ associated with
quadratic simple Parry numbers.
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q
⌉-balanced (using arithmetics)

• the number of A’s in any prefix of uβ is greater or equal to
the number of A’s in any other factor of uβ of the same
length

• uβ is ⌈p−1
q
⌉-balanced, which is the best possible upper

bound (using combinatorial techniques)

Journées de Numération, Graz – p.20



Outline of the talk

• Terminology of arithmetics on β-integers Zβ

• Non-simple quadratic Parry numbers
• Known facts about arithmetics on Zβ

• Improvement of the upper bound on L⊕(β)

• Infinite word uβ associated with β-integers

• Known facts on balance property of infinite words
• Balance property of uβ

• Deduction of the lower bound on L⊕(β) using the balance
property of uβ

Journées de Numération, Graz – p.21



Deduction of the lower bound on L⊕(β)

• The precise balance property implies that there exists
a prefix ŵ and a factor w of uβ such that
|ŵ|A − |w|A = ⌈p−1

q
⌉.
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Deduction of the lower bound on L⊕(β)

• The precise balance property implies that there exists
a prefix ŵ and a factor w of uβ such that
|ŵ|A − |w|A = ⌈p−1

q
⌉.

• Let x < y be the β-integers corresponding to w and z the
end-point of ŵ, then
x + z = y + ⌈p−1

q
⌉(∆0 − ∆1) = y + ⌈p−1

q
⌉p−q

β
.
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β
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• It follows that fpβ(x + z) ≥ fpβ(⌈p−1
q
⌉p−q

β
) ≥ ⌊p−1

q
⌋.
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Deduction of the lower bound on L⊕(β)

• The precise balance property implies that there exists
a prefix ŵ and a factor w of uβ such that
|ŵ|A − |w|A = ⌈p−1

q
⌉.

• Let x < y be the β-integers corresponding to w and z the
end-point of ŵ, then
x + z = y + ⌈p−1

q
⌉(∆0 − ∆1) = y + ⌈p−1

q
⌉p−q

β
.

• It follows that fpβ(x + z) ≥ fpβ(⌈p−1
q
⌉p−q

β
) ≥ ⌊p−1

q
⌋.

• Theorem: Let dβ(1) = pqω, p − 1 > q ≥ 1, then

⌊
p − 1

q
⌋ ≤ L⊕(β) ≤ ⌈

p

q
⌉.
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Deduction of the lower bound on L⊕(β)

• The precise balance property implies that there exists
a prefix ŵ and a factor w of uβ such that
|ŵ|A − |w|A = ⌈p−1

q
⌉.

• Let x < y be the β-integers corresponding to w and z the
end-point of ŵ, then
x + z = y + ⌈p−1

q
⌉(∆0 − ∆1) = y + ⌈p−1

q
⌉p−q

β
.

• It follows that fpβ(x + z) ≥ fpβ(⌈p−1
q
⌉p−q

β
) ≥ ⌊p−1

q
⌋.

• Theorem: Let dβ(1) = pqω, p − 1 > q ≥ 1, then

⌊
p − 1

q
⌋ ≤ L⊕(β) ≤ ⌈

p

q
⌉.

• ⌈p
q
⌉ − ⌊p−1

q
⌋ = 1, we conjecture that L⊕(β) = ⌊p−1

q
⌋.
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