Combinatorial and arithmetical properties of infinite words associated with quadratic non-simple Parry numbers

Ľ. Balková, E. Pelantová, O. Turek

Department of mathematics, FNSPE, CTU in Prague

• Terminology of arithmetics on β -integers \mathbb{Z}_{β}

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$, i.e., on fractional part arising when two β -integers are added

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

• Let $\beta > 1$ and $x \ge 0$, any series $x = \sum_{i=-\infty}^{k} x_i \beta^i$, $x_i \in \mathbb{N}_0$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$

- Let $\beta > 1$ and $x \ge 0$, any series $x = \sum_{i=-\infty}^{k} x_i \beta^i$, $x_i \in \mathbb{N}_0$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -representation of x obtained by the greedy algorithm is called β -expansion of x and denoted by $\langle x \rangle_{\beta}$

- Let $\beta > 1$ and $x \ge 0$, any series $x = \sum_{i=-\infty}^{k} x_i \beta^i$, $x_i \in \mathbb{N}_0$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -representation of x obtained by the greedy algorithm is called β -expansion of x and denoted by $\langle x \rangle_{\beta}$

•
$$\mathbb{Z}_{\beta} := \{ x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k x_{k-1} \dots x_0 \bullet \}.$$

- Let $\beta > 1$ and $x \ge 0$, any series $x = \sum_{i=-\infty}^{k} x_i \beta^i$, $x_i \in \mathbb{N}_0$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -representation of x obtained by the greedy algorithm is called β -expansion of x and denoted by $\langle x \rangle_{\beta}$
- $\mathbb{Z}_{\beta} := \{ x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k x_{k-1} \dots x_0 \bullet \}.$
- $Fin(\beta)$ is the set of real numbers x whose β -expansion of |x| is finite.

- Let $\beta > 1$ and $x \ge 0$, any series $x = \sum_{i=-\infty}^{k} x_i \beta^i$, $x_i \in \mathbb{N}_0$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -representation of x obtained by the greedy algorithm is called β -expansion of x and denoted by $\langle x \rangle_{\beta}$
- $\mathbb{Z}_{\beta} := \{ x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k x_{k-1} \dots x_0 \bullet \}.$
- $Fin(\beta)$ is the set of real numbers x whose β -expansion of |x| is finite.
- \mathbb{Z}_{β} is not closed under addition for $\beta \notin \mathbb{N}!$

- Let $\beta > 1$ and $x \ge 0$, any series $x = \sum_{i=-\infty}^{k} x_i \beta^i$, $x_i \in \mathbb{N}_0$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -representation of x obtained by the greedy algorithm is called β -expansion of x and denoted by $\langle x \rangle_{\beta}$
- $\mathbb{Z}_{\beta} := \{ x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k x_{k-1} \dots x_0 \bullet \}.$
- $Fin(\beta)$ is the set of real numbers x whose β -expansion of |x| is finite.
- \mathbb{Z}_{β} is not closed under addition for $\beta \notin \mathbb{N}!$
- $Fin(\beta)$ does not form a subring of \mathbb{R} in general! (Finiteness property)

• For $x \in Fin(\beta)$, the length of its β -fractional part is denoted $\operatorname{fp}_{\beta}(x)$

 For x ∈ Fin(β), the length of its β-fractional part is denoted fp_β(x)=min{l ∈ N₀ | β^lx ∈ Z_β}.

- For $x \in Fin(\beta)$, the length of its β -fractional part is denoted $fp_{\beta}(x) = min\{l \in \mathbb{N}_0 \mid \beta^l x \in \mathbb{Z}_{\beta}\}.$
- It may happen for $x, y \in Fin(\beta)$ that the sum $x + y \notin Fin(\beta)$.

- For x ∈ Fin(β), the length of its β-fractional part is denoted fp_β(x)=min{l ∈ N₀ | β^lx ∈ Z_β}.
- It may happen for $x, y \in Fin(\beta)$ that the sum $x + y \notin Fin(\beta)$.
- $L_{\oplus}(\beta)$ is the lowest upper bound on $fp_{\beta}(x+y)$, where $x, y \in \mathbb{Z}_{\beta}$ and $x + y \in Fin(\beta)$

- For x ∈ Fin(β), the length of its β-fractional part is denoted fp_β(x)=min{l ∈ N₀ | β^lx ∈ Z_β}.
- It may happen for $x, y \in Fin(\beta)$ that the sum $x + y \notin Fin(\beta)$.
- $L_{\oplus}(\beta)$ is the lowest upper bound on $fp_{\beta}(x+y)$, where $x, y \in \mathbb{Z}_{\beta}$ and $x + y \in Fin(\beta)$
- Formally written $L_{\oplus}(\beta) =$

 $\min\{L \in \mathbb{N}_0 \mid x, y \in \mathbb{Z}_\beta, \ x + y \in \operatorname{Fin}(\beta) \Rightarrow \operatorname{fp}_\beta(x + y) \le L\}$

if the set is not empty, otherwise $L_{\oplus}(\beta) := +\infty$.

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

• Thurston: Let $d_{\beta}(1) = t_1 t_2 \dots$, distances in \mathbb{Z}_{β} form the set $\{\Delta_k \mid k \in \mathbb{N}_0\}$, where $\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i}$.

- Thurston: Let $d_{\beta}(1) = t_1 t_2 \dots$, distances in \mathbb{Z}_{β} form the set $\{\Delta_k \mid k \in \mathbb{N}_0\}$, where $\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i}$.
- $\{\Delta_k \mid k \in \mathbb{N}_0\}$ is finite $\Leftrightarrow d_\beta(1)$ is eventually periodic.

- Thurston: Let $d_{\beta}(1) = t_1 t_2 \dots$, distances in \mathbb{Z}_{β} form the set $\{\Delta_k \mid k \in \mathbb{N}_0\}$, where $\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i}$.
- $\{\Delta_k \mid k \in \mathbb{N}_0\}$ is finite $\Leftrightarrow d_\beta(1)$ is eventually periodic.
- If $d_{\beta}(1)$ is eventually periodic, β is called a *Parry number*.

- Thurston: Let $d_{\beta}(1) = t_1 t_2 \dots$, distances in \mathbb{Z}_{β} form the set $\{\Delta_k \mid k \in \mathbb{N}_0\}$, where $\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i}$.
- $\{\Delta_k \mid k \in \mathbb{N}_0\}$ is finite $\Leftrightarrow d_\beta(1)$ is eventually periodic.
- If $d_{\beta}(1)$ is eventually periodic, β is called a *Parry number*.
- If $d_{\beta}(1)$ is finite, β is called a *simple Parry number*.

• Restriction of considerations to non-simple quadratic Parry numbers β :

• Restriction of considerations to non-simple quadratic Parry numbers β :

$$\circ \ d_{\beta}(1) = pq^{\omega}, p > q \ge 1$$

- Restriction of considerations to non-simple quadratic Parry numbers β :
 - $\circ \ d_{\beta}(1) = pq^{\omega}, p > q \ge 1$
 - $^{\circ}~~\beta$ is the larger root of $x^2-(p+1)x+(p-q)$

- Restriction of considerations to non-simple quadratic Parry numbers β :
 - $\circ \ d_{\beta}(1) = pq^{\omega}, p > q \ge 1$
 - $\circ \beta$ is the larger root of $x^2 (p+1)x + (p-q)$

$$\circ \ \Delta_0 = 1$$
, $\Delta_1 = 1 - rac{p-q}{eta}$

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

• Guimond, Masáková, Pelantová:

- Guimond, Masáková, Pelantová:
 - $^\circ~$ estimate on $L_\oplus(\beta)$ (accuracy ± 1) for quadratic simple Parry numbers β

- Guimond, Masáková, Pelantová:
 - $^\circ\,$ estimate on $L_\oplus(\beta)$ (accuracy $\pm 1)$ for quadratic simple Parry numbers $\beta\,$
 - \circ estimate on $L_{\oplus}(\beta)$ for general algebraic numbers β

- Guimond, Masáková, Pelantová:
 - $^{\circ}\,$ estimate on $L_{\oplus}(\beta)$ (accuracy $\pm 1)$ for quadratic simple Parry numbers β
 - estimate on $L_{\oplus}(\beta)$ for general algebraic numbers β
- For β quadratic non-simple Parry with $d_{\beta}(1) = pq^{\omega}$

 $L_{\oplus}(\beta) \le 3(p+1)\ln(p+1)$
- Guimond, Masáková, Pelantová:
 - $^{\circ}\,$ estimate on $L_{\oplus}(\beta)$ (accuracy $\pm 1)$ for quadratic simple Parry numbers β
 - estimate on $L_{\oplus}(\beta)$ for general algebraic numbers β
- For β quadratic non-simple Parry with $d_{\beta}(1) = pq^{\omega}$

 $L_{\oplus}(\beta) \le 3(p+1)\ln(p+1)$

• Our aim: a better upper bound on $L_{\oplus}(\beta)$ for β quadratic non-simple Parry

- Guimond, Masáková, Pelantová:
 - $^{\circ}\,$ estimate on $L_{\oplus}(\beta)$ (accuracy $\pm 1)$ for quadratic simple Parry numbers β
 - estimate on $L_{\oplus}(\beta)$ for general algebraic numbers β
- For β quadratic non-simple Parry with $d_{\beta}(1) = pq^{\omega}$

 $L_{\oplus}(\beta) \le 3(p+1)\ln(p+1)$

- Our aim: a better upper bound on $L_{\oplus}(\beta)$ for β quadratic non-simple Parry
- Burdík, Frougny, Gazeau, Krejcar

- Guimond, Masáková, Pelantová:
 - $^{\circ}\,$ estimate on $L_{\oplus}(\beta)$ (accuracy $\pm 1)$ for quadratic simple Parry numbers β
 - estimate on $L_{\oplus}(\beta)$ for general algebraic numbers β
- For β quadratic non-simple Parry with $d_{\beta}(1) = pq^{\omega}$

 $L_{\oplus}(\beta) \le 3(p+1)\ln(p+1)$

- Our aim: a better upper bound on $L_{\oplus}(\beta)$ for β quadratic non-simple Parry
- Burdík, Frougny, Gazeau, Krejcar
 - for β unit $L_{\oplus}(\beta) = 1$

- Guimond, Masáková, Pelantová:
 - $^{\circ}\,$ estimate on $L_{\oplus}(\beta)$ (accuracy $\pm 1)$ for quadratic simple Parry numbers β
 - \circ estimate on $L_{\oplus}(\beta)$ for general algebraic numbers β
- For β quadratic non-simple Parry with $d_{\beta}(1) = pq^{\omega}$

 $L_{\oplus}(\beta) \le 3(p+1)\ln(p+1)$

- Our aim: a better upper bound on $L_{\oplus}(\beta)$ for β quadratic non-simple Parry
- Burdík, Frougny, Gazeau, Krejcar
 - for β unit $L_{\oplus}(\beta) = 1$
 - $\circ \beta$ is unit for p-1=q

Outline of the talk

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

Improvement of the upper bound on $L_{\oplus}(\beta)$

• Parry condition: $d_{\beta}(1) = pq^{\omega}, \ p-1 > q \ge 1$ $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$ is a β -expansion if and only if

$$x_i x_{i-1} \cdots \prec pq^{\omega}$$
 for all $i \leq k$

Improvement of the upper bound on $L_{\oplus}(\beta)$

• Parry condition: $d_{\beta}(1) = pq^{\omega}, \ p-1 > q \ge 1$ $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$ is a β -expansion if and only if

$$x_i x_{i-1} \cdots \prec pq^{\omega}$$
 for all $i \leq k$

• Any finite β -representation can be transformed to the β -expansion, which is also finite!

• Fin(β) is not closed under subtraction, e.g., $\langle \beta - 1 \rangle_{\beta} = (p - 1) \bullet q^{\omega}$

- Fin(β) is not closed under subtraction, e.g., $\langle \beta 1 \rangle_{\beta} = (p 1) \bullet q^{\omega}$
- Let $x \ge y \ge 0$ and $x, y \in \mathbb{Z}_{\beta}$,

- Fin(β) is not closed under subtraction, e.g., $\langle \beta 1 \rangle_{\beta} = (p 1) \bullet q^{\omega}$
- Let $x \ge y \ge 0$ and $x, y \in \mathbb{Z}_{\beta}$,
 - \circ then $x y \in \mathbb{Z}_{\beta}$

- Fin(β) is not closed under subtraction, e.g., $\langle \beta 1 \rangle_{\beta} = (p 1) \bullet q^{\omega}$
- Let $x \ge y \ge 0$ and $x, y \in \mathbb{Z}_{\beta}$, • then $x - y \in \mathbb{Z}_{\beta}$ • or $x - y \notin \operatorname{Fin}(\beta)$.

- Fin(β) is not closed under subtraction, e.g., $\langle \beta 1 \rangle_{\beta} = (p 1) \bullet q^{\omega}$
- Let $x \ge y \ge 0$ and $x, y \in \mathbb{Z}_{\beta}$,
 - \circ then $x y \in \mathbb{Z}_{\beta}$
 - \circ or $x y \notin \operatorname{Fin}(\beta)$.
- Subtraction of positive elements does not raise $L_{\oplus}(\beta)$.

• Let $x \ge y \ge 0$ and $x, y \in \mathbb{Z}_{\beta}$. If all digits in $\langle y \rangle_{\beta}$ are $\le q$,

- Let $x \ge y \ge 0$ and $x, y \in \mathbb{Z}_{\beta}$. If all digits in $\langle y \rangle_{\beta}$ are $\le q$,
 - then $x + y \in \mathbb{Z}_{\beta}$

Let x ≥ y ≥ 0 and x, y ∈ Z_β.
If all digits in ⟨y⟩_β are ≤ q,
then x + y ∈ Z_β

$$\circ$$
 or $\langle x+y \rangle_{\beta} = z \bullet (p-q).$

- Let x ≥ y ≥ 0 and x, y ∈ Z_β.
 If all digits in ⟨y⟩_β are ≤ q,
 then x + y ∈ Z_β
 or ⟨x + y⟩_β = z (p − q).
- Any y can be written as $y^{(1)} + \cdots + y^{(k)}$, with $k \leq \lceil \frac{p}{q} \rceil$ and with digits of $\langle y^{(j)} \rangle_{\beta} \leq q$.

- Let x ≥ y ≥ 0 and x, y ∈ Z_β.
 If all digits in ⟨y⟩_β are ≤ q,
 then x + y ∈ Z_β
 or ⟨x + y⟩ = x (x g)
 - \circ or $\langle x+y \rangle_{\beta} = z \bullet (p-q).$
- Any y can be written as $y^{(1)} + \cdots + y^{(k)}$, with $k \leq \lceil \frac{p}{q} \rceil$ and with digits of $\langle y^{(j)} \rangle_{\beta} \leq q$.
- There exists $\varepsilon \in \{0, \dots, \lceil \frac{p}{q} \rceil\}$ such that $x + y \in \mathbb{Z}_{\beta} + \varepsilon \frac{p-q}{\beta}$.

- Let x ≥ y ≥ 0 and x, y ∈ Z_β.
 If all digits in ⟨y⟩_β are ≤ q,
 then x + y ∈ Z_β
 or ⟨x + y⟩_β = z (p − q).
- Any y can be written as $y^{(1)} + \cdots + y^{(k)}$, with $k \leq \lceil \frac{p}{q} \rceil$ and with digits of $\langle y^{(j)} \rangle_{\beta} \leq q$.
- There exists $\varepsilon \in \{0, \ldots, \lceil \frac{p}{q} \rceil\}$ such that $x + y \in \mathbb{Z}_{\beta} + \varepsilon \frac{p-q}{\beta}$.
- Theorem: Let $d_{\beta}(1) = pq^{\omega}$, $p-1 > q \ge 1$, then

$$L_{\oplus}(\beta) \leq \lceil \frac{p}{q} \rceil.$$

Outline of the talk

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

Infinite word u_{β} associated with β -integers

• For $d_{\beta}(1) = pq^{\omega}$, two distances between neighbors in \mathbb{Z}_{β}^+ :

$$\Delta_0 = 1$$
 and $\Delta_1 = 1 - \frac{p-q}{\beta}$

Infinite word u_{β} associated with β -integers

• For $d_{\beta}(1) = pq^{\omega}$, two distances between neighbors in \mathbb{Z}_{β}^+ :

$$\Delta_0 = 1$$
 and $\Delta_1 = 1 - \frac{p-q}{\beta}$

• Fabre: Associate $\Delta_0 \rightarrow A$ and $\Delta_1 \rightarrow B$, you get a right-sided infinite word u_β , fixed point of the substitution

 $\varphi(A) = A^p B, \ \varphi(B) = A^q B$

Outline of the talk

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

• An infinite word u over \mathcal{A} is *c*-balanced if for all $a \in \mathcal{A}$ and for any two factors w, v of u of the same length

$$||w|_a - |v|_a| \le c$$

• An infinite word u over \mathcal{A} is *c*-balanced if for all $a \in \mathcal{A}$ and for any two factors w, v of u of the same length

$$||w|_a - |v|_a| \le c$$

• Very few facts known about balances:

• An infinite word u over \mathcal{A} is *c*-balanced if for all $a \in \mathcal{A}$ and for any two factors w, v of u of the same length

$$||w|_a - |v|_a| \le c$$

- Very few facts known about balances:
 - Vuillon: An infinite aperiodic word u is Sturmian $\Leftrightarrow u$ is 1-balanced.

• An infinite word u over \mathcal{A} is *c*-balanced if for all $a \in \mathcal{A}$ and for any two factors w, v of u of the same length

 $||w|_a - |v|_a| \le c$

- Very few facts known about balances:
 - Vuillon: An infinite aperiodic word u is Sturmian $\Leftrightarrow u$ is 1-balanced.
 - Adamczewski: u fixed point of a primitive substitution with Perron eigenvalue λ and all the other eigenvalues in modulus < 1, then u is c-balanced for some constant c.

• An infinite word u over \mathcal{A} is *c*-balanced if for all $a \in \mathcal{A}$ and for any two factors w, v of u of the same length

 $||w|_a - |v|_a| \le c$

- Very few facts known about balances:
 - Vuillon: An infinite aperiodic word u is Sturmian $\Leftrightarrow u$ is 1-balanced.
 - Adamczewski: u fixed point of a primitive substitution with Perron eigenvalue λ and all the other eigenvalues in modulus < 1, then u is c-balanced for some constant c.
 - Turek: The lowest possible c for u_{β} associated with quadratic simple Parry numbers.

Outline of the talk

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

Our results on balance property of u_{β}

• u_{β} is $\lceil \frac{p}{q} \rceil$ -balanced (using arithmetics)

Our results on balance property of u_{β}

- u_{β} is $\lceil \frac{p}{q} \rceil$ -balanced (using arithmetics)
- the number of A's in any prefix of u_β is greater or equal to the number of A's in any other factor of u_β of the same length

Our results on balance property of u_{eta}

- u_{β} is $\lceil \frac{p}{q} \rceil$ -balanced (using arithmetics)
- the number of A's in any prefix of u_β is greater or equal to the number of A's in any other factor of u_β of the same length
- u_{β} is $\lceil \frac{p-1}{q} \rceil$ -balanced, which is the best possible upper bound (using combinatorial techniques)

Outline of the talk

- Terminology of arithmetics on β -integers \mathbb{Z}_{β}
- Non-simple quadratic Parry numbers
- Known facts about arithmetics on \mathbb{Z}_{β}
- Improvement of the upper bound on $L_{\oplus}(\beta)$
- Infinite word u_{β} associated with β -integers
- Known facts on balance property of infinite words
- Balance property of u_{β}
- Deduction of the lower bound on $L_{\oplus}(\beta)$ using the balance property of u_{β}

Deduction of the lower bound on $L_\oplus(eta)$

• The precise balance property implies that there exists a prefix \hat{w} and a factor w of u_{β} such that

$$|\hat{w}|_A - |w|_A = \lceil \frac{p-1}{q} \rceil.$$

Deduction of the lower bound on $L_{\oplus}(eta)$

• The precise balance property implies that there exists a prefix \hat{w} and a factor w of u_{β} such that

 $|\hat{w}|_A - |w|_A = \lceil \frac{p-1}{q} \rceil.$

 Let x < y be the β-integers corresponding to w and z the end-point of ŵ, then

$$x + z = y + \left\lceil \frac{p-1}{q} \right\rceil (\Delta_0 - \Delta_1) = y + \left\lceil \frac{p-1}{q} \right\rceil \frac{p-q}{\beta}.$$

Deduction of the lower bound on $L_{\oplus}(eta)$

• The precise balance property implies that there exists a prefix \hat{w} and a factor w of u_{β} such that

 $|\hat{w}|_A - |w|_A = \lceil \frac{p-1}{q} \rceil.$

 Let x < y be the β-integers corresponding to w and z the end-point of ŵ, then

$$x + z = y + \left\lceil \frac{p-1}{q} \right\rceil (\Delta_0 - \Delta_1) = y + \left\lceil \frac{p-1}{q} \right\rceil \frac{p-q}{\beta}.$$

• It follows that $fp_{\beta}(x+z) \ge fp_{\beta}(\lceil \frac{p-1}{q} \rceil \frac{p-q}{\beta}) \ge \lfloor \frac{p-1}{q} \rfloor$.

Deduction of the lower bound on $L_{\oplus}(eta)$

- The precise balance property implies that there exists a prefix ŵ and a factor w of u_β such that
 |ŵ|_A − |w|_A = [^{p−1}/_a].
- Let x < y be the β-integers corresponding to w and z the end-point of ŵ, then
 x + z = y + ⌈ p-1/a ⌉(Δ₀ Δ₁) = y + ⌈ p-1/a ⌉ p-q/β.
- It follows that $fp_{\beta}(x+z) \ge fp_{\beta}(\lceil \frac{p-1}{q} \rceil \frac{p-q}{\beta}) \ge \lfloor \frac{p-1}{q} \rfloor$.
- Theorem: Let $d_{\beta}(1) = pq^{\omega}$, $p-1 > q \ge 1$, then

$$\left\lfloor \frac{p-1}{q} \right\rfloor \le L_{\oplus}(\beta) \le \left\lceil \frac{p}{q} \right\rceil.$$
Deduction of the lower bound on $L_\oplus(eta)$

- The precise balance property implies that there exists a prefix ŵ and a factor w of u_β such that
 |ŵ|_A − |w|_A = [^{p−1}/_a].
- Let x < y be the β-integers corresponding to w and z the end-point of ŵ, then
 x + z = y + ⌈ p-1/q ⌉(Δ₀ − Δ₁) = y + ⌈ p-1/q ⌉^{p-q}/_β.
- It follows that $fp_{\beta}(x+z) \ge fp_{\beta}(\lceil \frac{p-1}{q} \rceil \frac{p-q}{\beta}) \ge \lfloor \frac{p-1}{q} \rfloor$.
- Theorem: Let $d_{\beta}(1) = pq^{\omega}$, $p-1 > q \ge 1$, then

$$\left\lfloor \frac{p-1}{q} \right\rfloor \le L_{\oplus}(\beta) \le \left\lceil \frac{p}{q} \right\rceil.$$

• $\lceil \frac{p}{q} \rceil - \lfloor \frac{p-1}{q} \rfloor = 1$, we conjecture that $L_{\oplus}(\beta) = \lfloor \frac{p-1}{q} \rfloor$.