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Shift radix systems

Let r = (r1, . . . , rd ) ∈ R
d (d ≥ 1) and

τr :

{

Z
d → Z

d

(a1, . . . , ad ) 7−→ (a2, . . . , ad ,−br1a1 + · · · + rdadc)

The mapping τr is called a shift radix system (SRS) if for all
a ∈ Z

d we can find some n ∈ N with τ n
r
(a) = (0, . . . , 0).

We are interested in the following sets:

D0
d =

{

r ∈ R
d : τr is a shift radix system

}

and

Dd =
{

r ∈ R
d : (τ k

r
(a))k≥0 is ultimately periodic for all a ∈ Z

d
}

.



Relationships of Dd and D0
d

Dd is related to the Schur-Cohn region:

Ed = {(r1, . . . , rd ) ∈ R
d : X d+rdX d−1+· · ·+r2X+r1 has only roots

y ∈ C with |y | < 1}

I Ed ⊆ Dd ⊆ Ed

I int (Dd ) = Ed

D0
d is related to number systems:

I β-expansions with finiteness property (F)

I canonical number systems



Shift radix systems and β-expansions

Theorem (Hollander (1996))

Let d > 1 and β > 1 be a Pisot number with minimal polynomial
X d − b1X

d−1 − · · · − bd−1X − bd . Set

rj := bjβ
−1 + bj+1β

−2 + · · · + bdβj−d−1 (2 ≤ j ≤ d).

(Note: X d − b1X
d−1 − b2X

d−2 − · · · − bd

= (X − β)(X d−1 + r2X
d−2 + · · · + rd ))

Then (rd , . . . , r2) ∈ D0
d−1 if and only if

Z

[ 1

β

]

∩ [0,∞)

coincides with the set of nonnegative real numbers having finite
greedy expansion with respect to β.



Canonical number systems

Let P = pdX d + · · · + p0 ∈ Z[X ] with p0 6= 0, pd = 1, and define
TP : Z[X ] −→ Z[X ] by

TP

(

m
∑

i=0

aiX
i
)

=
m−1
∑

i=0

ai+1X
i − b

a0

p0
c

d−1
∑

i=0

pi+1X
i .

Definition (Kátai , Szabó (1975), Kátai , Kovács (1980),
Kovács (1981), Gilbert (1981), Pethő (1991))

P is called a CNS polynomial if for each A ∈ Z[X ] there is a k ∈ N

such that T k
P (A) = 0. In this case the pair (α, {0, . . . , |P(0)| − 1})

is called a canonical number system (CNS) where α is a root of P .

Set

C0
d = {(p0, . . . , pd−1) ∈ Z

d : X d+pd−1X
d−1+· · ·+p0 CNS polynomial}

Cd = {(p0, . . . , pd−1) ∈ Z
d : p0 6= 0 and

TX d+pd−1X
d−1+···+p0

has only finite orbits}.



Shift radix systems and canonical number systems

We have the following relations for p0, . . . , pd−1 ∈ Z, p0 6= 0
(Akiyama, Borbély, B., Pethő, Thuswaldner (2005)):

I (p0, p1, . . . , pd−1) ∈ C0
d if and only if

(
1

p0
,
pd−1

p0
, . . . ,

p1

p0
) ∈ D0

d

I (p0, p1, . . . , pd−1) ∈ Cd if and only if

(
1

p0
,
pd−1

p0
, . . . ,

p1

p0
) ∈ Dd



Structure of the sets C0
d , Cd , D0

d and Dd

C0
1 = {p0 ∈ Z : p0 ≥ 2} (Grünwald (1885))

C1 = {p0 ∈ Z : |p0| ≥ 1}, D1 = [−1, 1], D0
1 = [0, 1)

(Akiyama, Borbély, B., Pethő, Thuswaldner (2005))

C0
2 = {(p0, p1) ∈ Z

2 : −1 ≤ p1 ≤ p0 ≥ 2}

(Kátai, Szabó (1975), Kátai, Kovács (1981), Gilbert (1981),
Grossman (1985), . . . )

C2 = {(p0, p1) ∈ Z
2 : −p0 ≤ p1 ≤ p0 + 1, p0 ≥ 2}



Structure of the sets C0
d , Cd , D0

d and Dd

Partial results for the sets Dd ,D0
d (d ≥ 2) and Cd , C0

d (d ≥ 3)
are known:

d = 2 : Gilbert (1981), Akiyama et al. (2006), Surer (2006), . . .

d = 3 : Scheicher, Thuswaldner (2004), Akiyama et al. (2006), . . .

d ≥ 3 : Kovács (1981), Kovács, Pethő (1983, 1991), Akiyama,

Pethő (2002), Scheicher, Thuswaldner (2004), Pethő (2004),

Akiyama, Rao (2004), Akiyama et al. (2004, 2006), . . .

But:
D0

2 = ?, D2 = ?



Structure of the sets C0
2 , C2, D0

1 and D1

C2 = {(p0, p1) ∈ Z
2 : −p0 ≤ p1 ≤ p0+1, p0 ≥ 2}, D1 = [−1, 1]

hence
{

p1

p0
: (p0, p1) ∈ C2

}

”approximates” [−1, 1] = D1 for p0 → ∞.

C0
2 = {(p0, p1) ∈ Z

2 : −1 ≤ p1 ≤ p0 ≥ 2}, D0
1 = [0, 1)

hence
{

p1

p0
: (p0, p1) ∈ C2

0

}

”approximates” [0, 1] = D1
0 for p0 → ∞.
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Approximation of SRS by CNS

In the following let d ≥ 2.

For the approximation we use

I suitable sets: For M ∈ N>0 let

C0
d (M) =

{(pd−1

M
, . . . ,

p1

M

)

∈ R
d−1 : (M, p1, . . . , pd−1) ∈ C0

d

}

and

Cd (M) =
{(pd−1

M
, . . . ,

p1

M

)

∈ R
d−1 : (M, p1, . . . , pd−1) ∈ Cd

}

.

I a notion of limit of sets:



Convergence of sets

Let (An)n∈N be a sequence of subsets of a topological space Z .

I A point z ∈ Z belongs to the (topological) lower limit
Limn→∞ An if every neighborhood of z intersects all An for n
sufficiently large.

I A point z ∈ Z belongs to the (topological) upper limit
Limn→∞ An if every neighborhood of z intersects An for
infinitely many n.

I The set A is said to be the (topological) limit of (An)n∈N if
A = Limn→∞ An = Limn→∞ An. We write

A = Lim
n→∞

An

Analogously: Limx→x0 Ax for x0 ∈ R, I ⊆ R and (Ax)x∈I a
collection of subsets of a topological space.



Approximation of the closure of Dd

Theorem

Lim
M→∞

Cd (M) = Dd−1

For x ∈ R we need the following “cuts” of Dd and D0
d :

Dd (x) =
{

(r2, . . . , rd ) ∈ R
d−1 : (x , r2, . . . , rd ) ∈ Dd

}

,

D0
d (x) =

{

(r2, . . . , rd ) ∈ R
d−1 : (x , r2, . . . , rd ) ∈ D0

d

}

.

Theorem

Lim
x→0

Dd (x) = Dd−1



Lebesgue measure of D0
d and Dd

Theorem (Akiyama, Borbély, B., Pethő, Thuswaldner (2005))

Dd and D0
d are Lebesgue measurable, and λd(Dd ) = λd (Ed ).

Theorem

(i) limx→0 λd−1 (Dd (x)4Dd−1) = 0.

(ii) limx→0 λd−1

(

D0
d(x)4D0

d−1

)

= 0.

(iii) For M ∈ N>0 set

W0
d(M) =

⋃

x∈C0
d
(M)

{

x
′ ∈ R

d−1 : ||x′ − x||∞ ≤
1

2M

}

.

Then we have

lim
M→∞

λd−1(W
0
d (M)4D0

d−1) = 0.



Lebesgue measure of D0
d and Dd

For M ∈ N>0 we set

N0(d ,M) = |{(p1, . . . , pd−1) ∈ Z
d−1 : (M, p1, . . . , pd−1) ∈ C0

d}|,

N(d ,M) = |{(p1, . . . , pd−1) ∈ Z
d−1 : (M, p1, . . . , pd−1) ∈ Cd}|.

We are interested in the frequencies for C0
d(M) and Cd (M)

N0(d ,M)

Md−1
and

N(d ,M)

Md−1

for M → ∞.

Remark
N0(2,M) = |{p1 ∈ Z : X 2 +p1X +M CNS polynomial}| = M +2,
hence

lim
M→∞

N0(2,M)

M
= 1 = λ1 ([0, 1)) = λ1(D

0
1).



The behavior of N0(3,M)/M2 for 2 ≤ M ≤ 464.

Apparently N0(3,M)/M2 → 1.766 . . . ' λ2(D
0
2)



Lebesgue measure of D0
d and Dd

Theorem

(i)

lim
M→∞

N0(d ,M)

Md−1
= λd−1

(

D0
d−1

)

(ii)

lim
M→∞

N(d ,M)

Md−1
= λd−1 (Dd−1)



Shift radix systems and canonical number systems

Open questions:

I Is it true that
Lim
x→0

D0
d (x) = D0

d−1 ?

I Can we estimate the number of Pisot numbers of a given
trace having property (F) by shift radix systems?


