Gerhard Dorfer

A Digital Description of the Fundamental Group of Fractals I

> (joint work with S. Akiyama, J. Thuswaldner and R. Winkler)

Project: Metric and Topological Aspects of Number Theoretical Problems

Principal Investigator: Reinhard Winkler

Analytic Combinatorics and Probabilistic Number Theory

National Research Network of the Austrian Science Foundation FWF

Some references

- J. Cannon and G. Conner. *The combinatorial structure of the Hawaiian earring group*. Topology Appl. 106 (2000), 225–271
- [2] J. Cannon and G. Conner. *The big fundamental group, big Hawaiian earrings, and the big free groups.* Topology Appl. 106 (2000), 273–291
- [3] J. Cannon and G. Conner. *On the fundamental group of one dimensional spases*. Preprint
- [4] G. Conner and K. Eda. Fundamental groups having the whole information of spaces. Topology Appl. 146/147 (2005), 317–328
- [5] K. Eda and K. Kawamura. The fundamental groups of one dimensional spaces. Topology Appl. 87 (1998), 163–172
- [6] J. Luo and J. Thuswaldner. *On the fundamental group of self affine plane tiles*. Ann. Inst. Fourier (Grenoble), to appear

Digital representation of the Sierpiński gasket \triangle

by sequences with digits $\{0, 1, 2\}$

<u>dyadic points</u>: belong to 2 subtriangles in \triangle_n , the smallest such n is the <u>order</u> of the dyadic point

dyadic points $P \neq (0), (1), (2)$ have 2 representations as sequences in $\{0, 1, 2\}^{\mathbb{N}}$ e.g. P = (0, 1, 2, 2, ...) = (0, 2, 1, 1, ...) =:(0, 1|2)

dyadic points correspond to sequences which are eventually constant

 $\underline{D_n}$: dyadic points of order $\leq n$

generic points have a unique representation

Symbolic representation of loops in \triangle

 ω : $[0,1] \rightarrow \triangle$, $\omega(0) = \omega(1) = (0)$

fixed approximation level n:

 $\{\omega^{-1}(P)|P \in D_n\}$ is a finite family of disjoint closed set $\subseteq [0, 1] \rightarrow$ separated family of sets

 $\omega \mapsto \underline{\sigma_n(\omega)}$: contains the (finite!) sequence of dyadic points of order $\leq n$ that ω "passes"

 $\sigma_n(\omega)$ is a finite word over the alphabet D_n

Frame for $(\sigma_n(\omega))_{n\in\mathbb{N}}$

- <u> S_n </u>: the set of all "admissible" words ω_n over the alphabet D_n , i.e.
- 1. ω_n starts and ends with (0)
- 2. consecutive letters in ω_n are neighboring dyadic points in $riangle_n$

 (S_n, \cdot) : semigroup where \cdot is concatenation of words and one intermediate (0) is cancelled

 $\frac{\gamma_n: S_n \to S_{n-1}}{n \text{ and cancels out repetitions of points}} \gamma_n \text{ deletes all points of order}$

 γ_n is a semigroup homomorphism

 $\lim S_n$ inverse limit of semigroups S_n

Proposition. Let $\omega : [0,1] \to \triangle$ be a loop in \triangle . Then $(\sigma_n(\omega))_{n \in \mathbb{N}} \in \varprojlim S_n$.

 \downarrow

Reduction process reflecting homotopy

<u>reduced words</u> in S_n : do not contain subwords of the form <u>PQP</u>, or <u>PQR</u>, where P, Q, R belong to the same subtriangle of Δ_n

 $\underline{G_n}$: the set of all reduced words over the alphabet D_n

<u>Red_n: $S_n \rightarrow G_n$:</u> reduces subwords

 $\left\{ \begin{array}{ll} PQP \rightarrow P, & \text{and} \\ PQR \rightarrow PR & (P,Q,R \text{ in the same subtriangle}) \\ \text{until word is reduced} \end{array} \right.$

• Red_n well defined

• $\operatorname{Red}_n(\omega_n)$ canonical representative of the homotopy class of the elementary path corresp. to ω_n in Δ_n

multiplication * in G_n :

$$\omega_n * \bar{\omega}_n := \operatorname{Red}_n(\omega_n \cdot \bar{\omega}_n)$$

Proposition. (G_n , *) is isomorphic to the fundamental group of Δ_n .

$$\delta_n : \left\{ \begin{array}{ll} G_n \rightarrow G_{n-1} & \text{is a group} \\ \omega_n \rightarrow \operatorname{Red}_{n-1}(\gamma_n(\omega_n)) & \text{homomorphism} \\ \downarrow \end{array} \right.$$

 $\lim G_n$ inverse limit of groups

Proposition. The Čech homotopy group of \triangle is isomorphic to $\lim G_n$.

the following diagram commutes:

$$S_n \xrightarrow{\gamma_n} S_{n-1}$$

 $\downarrow \operatorname{Red}_n \operatorname{Red}_{n-1} \downarrow$
 $G_n \xrightarrow{\delta_n} G_{n-1}$

$$\begin{array}{cccc} S(\Delta) & \stackrel{\sigma}{\longrightarrow} & \varprojlim S_n \\ \downarrow & [.] & & \mathsf{Red} & \downarrow \\ & & & & & \\ \pi(\Delta) & \stackrel{\varphi}{\longrightarrow} & \varprojlim G_n \end{array}$$

 $\underbrace{(S(\triangle), \cdot):}_{\text{concatenation } \cdot} \text{ groupoid of loops in } \triangle \text{ with }$

 $[\omega]$ homotopy class of ω

 $\sigma(\omega) := (\sigma_n(\omega))_{n \in \mathbb{N}}$

 $\operatorname{Red}((\omega_n)_{n\in\mathbb{N}}) := (\operatorname{Red}_n(\omega_n))_{n\in\mathbb{N}}$

 $\varphi([\omega]) := (\operatorname{Red}_{n}(\sigma_{n}(\omega)))_{n \in \mathbb{N}}$

• $\underline{\varphi}$ is injective (Eda/Kawamura 1998), i.e. $\pi(\Delta)$ is a subgroup of $\lim G_n$

• φ is not surjective:

Example 1. $\omega_1 = (0)$ $\omega_2 = C_0 C_1 C_0^{-1}$ $\omega_3 = C_0 C_1 C_0^{-1} C_2$ $\omega_4 = C_0 C_1 C_0^{-1} C_2 C_0 C_3 C_0^{-1}$... $(\omega_n)_{n \in \mathbb{N}} \in \lim G_n$, but $(\omega_n)_{n \in \mathbb{N}} \notin \operatorname{range}(\varphi)$:

a loop ω in \triangle with $\varphi([\omega]) = (\omega_n)_{n \in \mathbb{N}}$ has to pass the cycle C_0 infinitely often

• $range(\varphi) = range(\varphi \circ [.]) = range(Red \circ \sigma)$

• σ is not surjective:

Example 2.

```
\omega_1 = (0)(0|1)(0)
```

- $\omega_2 = (0)(0,0|1)(0|1)(1,0|1)(0|1)(0,0|1)(0)$ $\omega_3 = (0)(0,0,0|1)(0,0|1)\dots(1,1,0|1)\dots(0)$...
- graph associated to $(\omega_n)_{n \in \mathbb{N}} \in \lim S_n$:
 - every branch corresponds to a dyadic point
 - there is total order on the branches
 - this order is dense
 - every Dedekind cut in the set of branches converges to a point in the Sierpiński gasket

Range and kernel of σ

Theorem. $(\omega_n)_{n \in \mathbb{N}} \in \varprojlim S_n$ is in the range of σ if and only if every irrational Dedekind cut in the set of branches of the graph associated to $(\omega_n)_{n \in \mathbb{N}}$ converges to a generic point in Δ .

Theorem. For ω and $\overline{\omega}$ in $S(\Delta)$ we have $\sigma(\omega) = \sigma(\overline{\omega})$ if and only if ω and $\overline{\omega}$ have a common re-parametrization, i.e. there exist $\alpha, \beta : [0, 1] \rightarrow [0, 1]$ monotonously increasing and surjective such that $\omega \circ \alpha = \overline{\omega} \circ \beta$.

Main Theorem. An element $(\omega_n)_{n\geq 0}$ of $\varprojlim G_n$ is in $\varphi(\pi(\Delta))$ if and only if for all $k\geq 0$ the sequence

$$(\gamma_{nk}(\omega_n))_{n\geq k}$$

stabilizes, where $\gamma_{nk} = \gamma_{k+1} \circ \ldots \circ \gamma_n$.