Bernoulli convolutions associated with some algebraic numbers

De-Jun Feng

The Chinese University of Hong Kong http://www.math.cuhk.edu.hk/~djfeng

Outline

- Introduction
- Classical Questions
- Characterizing singularity (Pisot numbers).
- Non-smoothness (Salem numbers and some other algebraic numbers).
- Smoothness (Garcia numbers, rational numbers)
- Gibbs properties

Introduction

Fix $\lambda > 1$. Consider the random series

$$F_{\lambda} = \sum_{n=0}^{\infty} \epsilon_n \lambda^{-n},$$

where $\{\epsilon_n = \epsilon_n(\omega)\}$ is a sequence of i.i.d random variables taking the values 0 and 1 with prob. (1/2, 1/2).

Let μ_{λ} be the distribution of F_{λ} , i.e.,

 $\mu_{\lambda}(E) = \operatorname{Prob}(F_{\lambda} \in E), \quad \forall \text{ Borel } E \subset \mathbb{R}$

The measure μ_{λ} is called the **Bernoulli convolution** associated with λ . It is supported on the interval $[0, \lambda/(\lambda - 1)]$.

The following are some basic properties:

- μ_{λ} is the infinite convolution of $\frac{1}{2}\delta_0 + \frac{1}{2}\delta_{\lambda^{-n}}$.
- Let $\widehat{\mu_{\lambda}}(\xi) = \int \exp(i2\pi\xi x) d\mu_{\lambda}(x)$ be the Fourier transform of μ_{λ} . Then

$$|\widehat{\mu_{\lambda}}(\xi)| = \prod_{n=0}^{\infty} \left| \cos(\pi \lambda^{-n} \xi) \right|.$$

• Self-similar relation:

$$\mu_{\lambda}(E) = \frac{1}{2} \mu_{\lambda} \left(\phi_1^{-1}(E) \right) + \frac{1}{2} \mu_{\lambda} \left(\phi_2^{-1}(E) \right),$$

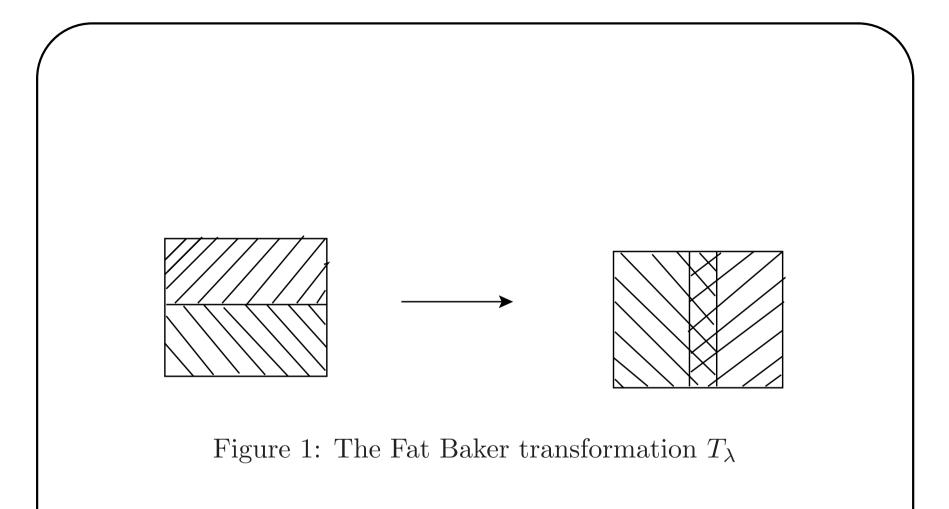
where $\phi_1(x) = \lambda^{-1}x$ and $\phi_2(x) = \lambda^{-1}x + 1$.

• Density function $f(x) = \frac{d\mu_{\lambda}(x)}{dx}$ (if it exists) satisfies the refinement equation

$$f(x) = \frac{\lambda}{2}f(\lambda x) + \frac{\lambda}{2}f(\lambda x - \lambda).$$

• (Alexander & Yorke, 1984): μ_{λ} is the projection of the SRB measure of the Fat baker transform $T_{\lambda} : [0, 1]^2 \to [0, 1]^2$, where

$$T_{\lambda}(x,y) = \begin{cases} (\lambda^{-1}x, 2y), & \text{if } 0 \le y \le 1/2\\ (\lambda^{-1}x + 1 - \lambda^{-1}, 2y - 1), & \text{if } 1/2 < y \le 1 \end{cases}$$



Classical questions

- For which $\lambda \in (1,2)$, μ_{λ} is absolutely continuous?
- If abs. cont., how smooth is the density $\frac{d\mu_{\lambda}}{dx}$?
- If singular, how to describe the local structure and singularity?
- Does μ_{λ} have some kind of Gibbs property? Does the multifractal formalism holds for μ_{λ} ?

Remark

- If $\lambda > 2$, μ_{λ} is a Cantor measure and thus is singular.
- If $\lambda = 2$, μ_{λ} is just the uniform distribution on [0, 2].
- For all λ > 1, μ_λ is either absolutely continuous or singular (Jessen & Wintner, 1935).

Partial answers:

• (Erdös, 1939): For the golden ratio $\lambda = \frac{\sqrt{5}+1}{2}$, μ_{λ} is singular

In fact Erdös showed that for the golden ratio, $\widehat{\mu_{\lambda}}(\xi) \neq 0$ as $\xi \to \infty$ using the key algebraic property: $\operatorname{dist}(\lambda^n, \mathbb{Z}) \to 0$ exponentially. The same property holds when λ is a **Pisot number** (i.e., an algebraic integer whose conjugates are all inside the unit disc).

Remark: Using Erdös' method one can not find new parameter λ for which μ_{λ} is singular. Since Salem (1963) proved that the property $\widehat{\mu_{\lambda}}(\xi) \not\rightarrow 0$ as $\xi \rightarrow \infty$ implies that λ is a Pisot number. For a family of explicit algebraic integers λ called Garcia numbers (namely, a real algebraic integer λ > 1 such that all its conjugates are larger than 1 in modulus, and their product together with λ equals ±2), e.g., λ = ⁿ√2 or the largest root of xⁿ - x - 2, μ_λ is absolutely continuous. (Garcia, 1965).
∃C > 0 s.t for I = i₁...i_n, J = j₁...j_n ∈ {0,1}ⁿ with I ≠ J,

$$\left|\sum_{k=1}^{n} (i_k - j_k) \lambda^{-k}\right| > C \cdot 2^{-n}.$$

- (Erdös, 1940): There exists a very small number $\delta \approx 2^{2^{-10}} 1$ such that μ_{λ} is absolutely continuous for a.e $\lambda \in (1, 1 + \delta)$.
- (Solomyak, 1995, Ann Math.): For a.e. $\lambda \in (1, 2), \mu_{\lambda}$ is absolutely continuous with density $\frac{d\mu_{\lambda}}{dx} \in L^2$.

Open Problems:

- Are the Pisot numbers the only ones for which μ_{λ} are singular?
- Can we construct explicit numbers other than Garcia numbers for which μ_{λ} are absolutely continuous?

Characterizing singularity (Pisot numbers)

• Golden ratio case:

(entropy, Hausdorff dimension, local dimensions, multifractal structure of μ_{λ}) has been considered by many authors, e.g., Alexander-Yorke (1984), Ledrappier-Porzio(1992), Lau-Ngai(1998), Sidorov-Vershik(1998). F. & Olivier(2003).

• Pisot numbers:

(Lalley(1998): $\dim_H \mu_{\lambda}$ =Lyapunov exponent of random matrice).

• Dynamical structures corresponding to Pisot numbers

Theorem (F., 2003, 2005) The support of μ_{λ} can be coded by a subshift of finite type, and

 $\mu_{\lambda}([i_1 \dots i_n]) \approx \|M_{i_1} \dots M_{i_n}\|$

where $\{M_i\}$ is a finite family of non-negative matrices.

The above result follows from the finiteness property of Pisot numbers:

$$\#\left\{\sum_{k=1}^{n}\epsilon_{k}\lambda^{k}: n \in \mathbb{N}, \epsilon_{k}=0,\pm 1\right\} \cap [a,b] < \infty$$

for any a, b.

For some special case, e.g., when λ is the largest root of $x^k - x^{k-1} - \ldots - x - 1$, the above product of matrices is degenerated into product of scalars; and locally μ_{λ} can be viewed as a self-similar measure with countably many non-overlapping generators. As an application, some explicit dimension formulae are obtained for μ_{λ} .

Non-smoothness.

Theorem (Kahane, 1971)

 $\frac{d\mu_{\lambda}}{dx} \notin C^1$ for Salem numbers λ (since there are no $\alpha > 0$ such that $\widehat{\mu_{\lambda}}(\xi) = O(|\xi|^{-\alpha})$ at infinity)

Problem : Is there non-Pisot number for which $\frac{d\mu_{\lambda}}{dx} \notin L^2$?

Theorem (F. & Wang, 2004) Let λ_n be the largest root of $x^n - x^{n-1} - \ldots - x^3 - 1$. Then for any $n \ge 17$, λ_n is non-Pisot and $\frac{d\mu_{\lambda_n}}{dx} \notin L^2$.

Our result hints that perhaps μ_{λ_n} is singular.

Theorem (F. & Wang, 2004) Let λ_n be the largest root of $x^n - x^{n-1} - \ldots - x + 1, n \ge 4$, (λ_n are Salem numbers). Then for any $\epsilon > 0, \frac{d\mu_{\lambda_n}}{dx} \notin L^{3+\epsilon}$ when n is large enough.

Conjecture: there is a set Λ dense in (1,2) such that $\frac{d\mu_{\lambda}}{dx} \notin L^2$ for $\lambda \in \Lambda$?

$\mathbf{Smoothness}$

Problem : For which λ , the density $\frac{d\mu_{\lambda}}{dx}$ is a piecewise polynomial?

Answer: If and only if $\lambda = \sqrt[n]{2}$. (Dai, F. & Wang, 2006) **Problem:** For which λ , $\widehat{\mu_{\lambda}}(\xi)$ has a decay at ∞ ? i.e., there exists $\alpha > 0$ such that $\widehat{\mu_{\lambda}}(\xi) = O(|\xi|^{-\alpha})$.

Remark: If $\widehat{\mu_{\lambda}}(\xi)$ has a decay at ∞ , then $\mu_{\lambda^{1/n}}$ has a C^k density if n is large enough.

Theorem (Dai, F. & Wang, to appear in JFA): If λ is a Garcia number, then $\widehat{\mu_{\lambda}}(\xi)$ has a decay at ∞ .

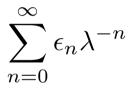
Problem :

Is μ_{λ} absolutely continuous for $\lambda = \frac{3}{2}$?

It is still open. But it is true for the distribution of the random series

$$\sum_{n=0}^{\infty} \epsilon_n \lambda^{-n},$$

where $\epsilon_n = 0, 1, 2$ with probability 1/3, and $\lambda = \frac{3}{2}$ (Dai, F. & Wang) Moreover for any rational number $\lambda \in (1, 2)$, and $k \in \mathbb{N}$, we can find a digit set D of integers and a probability vector $\mathbf{p} = (p_1, \dots, p_{|D|})$ such that the distribution of the random series



has a C^k density function, where ϵ_n is taken from D with the distribution **p**.

However, the above result is not true if λ is a non-integral Pisot number, e.g., $\frac{\sqrt{5}+1}{2}$

Gibbs properties

Is μ_{λ} equivalent to some invariant measure of a dynamical system? (Sidorov & Vershik, 1999): For $\lambda = \frac{\sqrt{5}+1}{2}$, μ_{λ} is equivalent to an ergodic measure ν of the map $T_{\lambda} : [0, 1] \to [0, 1]$ defined by

 $x \to \lambda x \pmod{1}$

Question by S&V: Is the corresponding measure ν a Gibbs measure?

Answer: It is a kind of weak-Gibbs measure. (Olivier & Thomas)

Theorem (F., to appear in ETDS)

For any $\lambda > 1$, μ_{λ} has a kind of Gibbs property as follows: For q > 1, there exists a measure $\nu = \nu_q$ such that for any x

 $\nu(B_r(x)) \preceq r^{-\tau(q)}(\mu_\lambda(B_r(x)))^q.$

As a result, μ_{λ} always partially satisfies the multifractal formalism. In particular, if λ is a Salem number, we have

 $\nu(B_r(x)) \preceq C_r r^{-\tau(q)} (\mu_\lambda(B_r(x)))^q$

for all q > 0, where $\log c_r / \log r \to 0$ as $r \to 0$.

Applications of Abs-Continuity property

(1) Dimension estimates of some affine graphs:

• Let W(x) denote the Weirestrass function

$$W(x) = \sum_{n=0}^{\infty} \lambda^{-n} \cos(2^n x)$$

It is an open problem to determine if or not the Hausdorff dimension of the graph of W is equal to its box dimension (the latter equals $2 - \log \lambda / \log 2$)

• Consider the same question for the graph of the Rademacher series

$$F(x) = \sum_{n=0}^{\infty} \lambda^{-n} R(2^n x)$$

where R is a function of period 1, taking value 1 on [0, 1/2) and 0 on [1/2, 1).

Pryzycki & Urbanski (1989) showed that if μ_{λ} is absolutely continuous then the graph of F has the same Hausdorff dimension and box counting dimension. Moreover they show that if λ is a Pisot number, then the Hausdorff dimension is strictly less than its box counting dimension (the latter equals $2 - \log \lambda / \log 2$). The explicit value is obtained for some special Pisot numbers (F. 2005).

Applications of Abs-Continuity property

(2) Absolute continuity of the SRB measure of the Fat Baker transform.

Alexander & Yorke (1984) showed that if μ_{λ} is abs cont., then so is the corresponding SRB measure of the Fat Baker transform T_{λ} .