FRACTAL CRYSTALLOGRAPHIC TILINGS

Benoît Loridant

Leoben University - TU Vienna, Austria

April, 2007

Supported by FWF, Projects S9604, S9610, and S9612.

Introduction

• Purpose: self-similar tiles *T* providing a tiling of the plane with respect to a crystallographic group.

Introduction

- Purpose: self-similar tiles *T* providing a tiling of the plane with respect to a crystallographic group.
- Question: when is T homeomorphic to a closed disk?

Introduction

- Purpose: self-similar tiles *T* providing a tiling of the plane with respect to a crystallographic group.
- Question: when is T homeomorphic to a closed disk?
- Results: criteria involving the configuration of the neighbors of *T* in the tiling.

Crystallographic tiling

• If T is a compact set with $T = \overline{T^o}$, Γ a family of isometries of \mathbb{R}^2 such that $\mathbb{R}^2 = \bigcup_{\gamma \in \Gamma} \gamma(T)$ and the $\gamma(T)$ do not overlap, we say that T tiles \mathbb{R}^2 by Γ .

Crystallographic tiling

- If T is a compact set with $T = \overline{T^o}$, Γ a family of isometries of \mathbb{R}^2 such that $\mathbb{R}^2 = \bigcup_{\gamma \in \Gamma} \gamma(T)$ and the $\gamma(T)$ do not overlap, we say that T tiles \mathbb{R}^2 by Γ .
- $\Gamma \leq \text{Isom}(\mathbb{R}^2)$ is a crystallographic group if $\Gamma \simeq \mathbb{Z}^2 \ltimes \{id, r_2, \dots, r_d\}$ with r_2, \dots, r_d isometries of finite order greater than 2.

- Γ crystallographic group,

- Γ crystallographic group,
- g expanding affine map such that $g\Gamma g^{-1}\leq \Gamma$,

- Γ crystallographic group,
- g expanding affine map such that $g\Gamma g^{-1}\leq \Gamma$,
- $\mathcal{D} \subset \Gamma$ digit set (complete set of right coset representatives of $\Gamma/g\Gamma g^{-1}$).

- Γ crystallographic group,
- g expanding affine map such that $g\Gamma g^{-1} \leq \Gamma$,
- $\mathcal{D} \subset \Gamma$ digit set (complete set of right coset representatives of $\Gamma/g\Gamma g^{-1}$).

A crystallographic reptile with respect to (Γ, \mathcal{D}, g) is a set $T \subset \mathbb{R}^2$ such that T tiles \mathbb{R}^2 by Γ and

$$g(T) = \bigcup_{\delta \in \mathcal{D}} \delta(T).$$

We consider

• the group $p3=\{\;a^ib^jr^k,\;\;i,j\in\mathbb{Z}\;,\;k\in\{0,1,2\}\;\}$ where

$$\begin{aligned} a(x,y) &= (x+1,y) \\ b(x,y) &= (x+1/2, y+\sqrt{3}/2) , \\ r &= \operatorname{rot}[0, 2\pi/3] \end{aligned}$$

We consider

• the group $p3=\{\;a^ib^jr^k,\;\;i,j\in\mathbb{Z}\;,\;k\in\{0,1,2\}\;\}$ where

$$\begin{aligned} a(x,y) &= (x+1,y) \\ b(x,y) &= (x+1/2, y+\sqrt{3}/2) , \\ r &= \operatorname{rot}[0, 2\pi/3] \end{aligned}$$

• the digit set $\{id,ar^2,br^2\}$,

We consider

• the group $p3=\{\;a^ib^jr^k,\;\;i,j\in\mathbb{Z}\;,\;k\in\{0,1,2\}\;\}$ where

$$\begin{aligned} a(x,y) &= (x+1,y) \\ b(x,y) &= (x+1/2, y+\sqrt{3}/2) \\ r &= \operatorname{rot}[0, 2\pi/3] \end{aligned}$$

• the digit set $\{id,ar^2,br^2\}$,

• the map
$$g(x,y) = \sqrt{3}(y,-x).$$

Figure: Terdragon T defined by $g(T) = T \cup ar^2(T) \cup br^2(T)$.

 ${\boldsymbol{T}}$ is the union of its ${\boldsymbol{n}}\text{-th}$ level subpieces:

$$T = \bigcup_{\delta_1 \in \mathcal{D}} g^{-1} \delta_1(T)$$

 ${\boldsymbol{T}}$ is the union of its ${\boldsymbol{n}}\text{-th}$ level subpieces:

$$T = \bigcup_{\delta_1 \in \mathcal{D}} g^{-1} \delta_1(T)$$
$$= \bigcup_{\delta_1, \delta_2 \in \mathcal{D}} g^{-1} \delta_1 g^{-1} \delta_2(T)$$

 ${\boldsymbol{T}}$ is the union of its ${\boldsymbol{n}}\text{-th}$ level subpieces:

$$T = \bigcup_{\delta_1 \in \mathcal{D}} g^{-1} \delta_1(T)$$

=
$$\bigcup_{\delta_1, \delta_2 \in \mathcal{D}} g^{-1} \delta_1 g^{-1} \delta_2(T)$$

=
$$\{ \lim_{n \to \infty} g^{-1} \delta_1 \dots g^{-1} \delta_n(a), \ \delta_j \in \mathcal{D} \}$$

(a is any point of \mathbb{R}^2).

 ${\boldsymbol{T}}$ is the union of its ${\boldsymbol{n}}\text{-th}$ level subpieces:

$$T = \bigcup_{\delta_1 \in \mathcal{D}} g^{-1} \delta_1(T)$$
$$= \bigcup_{\delta_1, \delta_2 \in \mathcal{D}} g^{-1} \delta_1 g^{-1} \delta_2(T)$$
$$= \left\{ \lim_{n \to \infty} g^{-1} \delta_1 \dots g^{-1} \delta_n(a), \ \delta_j \in \mathcal{D} \right\}$$

(a is any point of \mathbb{R}^2).

Therefore, each $x \in T$ has an adress

$$x = (\delta_1 \ \delta_2 \ \ldots) \, .$$

Known results

• [Gelbrich - 1994] Two crystiles $(T; \Gamma, D, g)$ and $(T'; \Gamma', D', g')$ are isomorphic if there is an affine bijection $\phi : T \to T'$ preserving the pieces of all levels. There are at most finitely many isomorphy classes of disk-like plane crystiles with kdigits $(k \ge 2)$.

Known results

- [Gelbrich 1994] Two crystiles $(T; \Gamma, D, g)$ and $(T'; \Gamma', D', g')$ are isomorphic if there is an affine bijection $\phi : T \to T'$ preserving the pieces of all levels. There are at most finitely many isomorphy classes of disk-like plane crystiles with kdigits $(k \ge 2)$.
- [Luo, Rao, Tan 2002] T connected self-similar tile with $T^o \neq \emptyset$ is disk-like whenever its interior is connected.

Known results

- [Gelbrich 1994] Two crystiles $(T; \Gamma, D, g)$ and $(T'; \Gamma', D', g')$ are isomorphic if there is an affine bijection $\phi : T \to T'$ preserving the pieces of all levels. There are at most finitely many isomorphy classes of disk-like plane crystiles with kdigits $(k \ge 2)$.
- [Luo, Rao, Tan 2002] T connected self-similar tile with $T^o \neq \emptyset$ is disk-like whenever its interior is connected.
- [Bandt, Wang 2001] Criterion of disk-likeness for lattice tiles in terms of the number of neighbors of the central tile.

Neighbors

• Set of neighbors: $\mathcal{S} := \{ \gamma \in \Gamma \setminus \{ id \}, T \cap \gamma(T) \neq \emptyset \}.$

Neighbors

- Set of neighbors: $\mathcal{S} := \{ \gamma \in \Gamma \setminus \{ id \}, T \cap \gamma(T) \neq \emptyset \}.$
- The boundary of T is:

$$\partial T = \bigcup_{\gamma \in \mathcal{S}} T \cap \gamma(T).$$

Boundary graph

The boundary graph G(S) is defined as follows:

• the vertices are the $\gamma \in \mathcal{S}$,

Boundary graph

The boundary graph G(S) is defined as follows:

- the vertices are the $\gamma\in\mathcal{S}$,
- there is an edge $\gamma \xrightarrow{\delta_1 | \delta_1'} \gamma_1 \in G(\mathcal{S})$ iff

$$\gamma \ g^{-1}\delta_1' = g^{-1}\delta_1 \ \gamma_1$$

with $\gamma, \gamma_1 \in \mathcal{S}$ and $\delta_1, \delta'_1 \in \mathcal{D}$.

Boundary characterization

Theorem

Let $\delta_1, \delta_2, \ldots$ a sequence of digits and $\gamma \in S$. Then the following assertions are equivalent.

- $x = (\delta_1 \ \delta_2 \ \ldots) \in T \cap \gamma(T).$
- There is an infinite walk in G(S) of the shape:

$$\gamma \xrightarrow{\delta_1|\delta_1'} \gamma_1 \xrightarrow{\delta_2|\delta_2'} \gamma_2 \xrightarrow{\delta_3|\delta_3'} \dots$$
(1)

for some $\gamma_i \in S$ and $\delta'_i \in D$.

Boundary characterization

Theorem

Let $\delta_1, \delta_2, \ldots$ a sequence of digits and $\gamma \in S$. Then the following assertions are equivalent.

- $x = (\delta_1 \ \delta_2 \ \ldots) \in T \cap \gamma(T).$
- There is an infinite walk in G(S) of the shape:

$$\gamma \xrightarrow{\delta_1|\delta_1'} \gamma_1 \xrightarrow{\delta_2|\delta_2'} \gamma_2 \xrightarrow{\delta_3|\delta_3'} \dots$$
(1)

for some $\gamma_i \in S$ and $\delta'_i \in D$.

Remark. The set of neighbors S and the boundary graph G(S) can be obtained algorithmically for given data (Γ, \mathcal{D}, g) .

Neighbor and Adjacent neighbor graphs

The neighbor graph of a crystallographic tiling is the graph G_N with

- $\bullet \text{ vertices } \gamma \in \Gamma$
- edges $\gamma \gamma'$ if $\gamma(T) \cap \gamma'(T) \neq \emptyset$, *i.e.*, $\gamma' \in \gamma S$.

Neighbor and Adjacent neighbor graphs

The neighbor graph of a crystallographic tiling is the graph ${\cal G}_N$ with

- vertices $\gamma \in \Gamma$
- edges $\gamma \gamma'$ if $\gamma(T) \cap \gamma'(T) \neq \emptyset$, i.e., $\gamma' \in \gamma S$.

Adjacent neighbors: γ, γ' with $\gamma(T) \cap \gamma'(T)$ contains a point of $(\gamma(T) \cup \gamma'(T))^o$. \mathcal{A} denotes the set of adjacent neighbors of *id*. It can be obtained with the help of $G(\mathcal{S})$.

Neighbor and Adjacent neighbor graphs

The neighbor graph of a crystallographic tiling is the graph ${\cal G}_N$ with

- $\bullet \text{ vertices } \gamma \in \Gamma$
- edges $\gamma \gamma'$ if $\gamma(T) \cap \gamma'(T) \neq \emptyset$, i.e., $\gamma' \in \gamma S$.

Adjacent neighbors: γ, γ' with $\gamma(T) \cap \gamma'(T)$ contains a point of $(\gamma(T) \cup \gamma'(T))^o$. \mathcal{A} denotes the set of adjacent neighbors of *id*. It can be obtained with the help of $G(\mathcal{S})$.

The adjacent neighbor graph of a crystallographic tiling is the graph G_A with

- vertices $\gamma \in \Gamma$
- edges $\gamma \gamma'$ if $\gamma(T)$ and $\gamma'(T)$ are adjacent, *i.e.*, $\gamma' \in \gamma \mathcal{A}$.

G_A and G_N for the p3 example

Figure: Adjacent neighbor graph for the Terdragon.

G_A and G_N for the p3 example

Figure: G_A and the neighbors of the identity.

G_A and G_N for the p3 example

Figure: G_A and the neighbors of the identity. In blue: the digits.

General criterion of disk-likeness

Theorem (with Luo J. and J.-M. Thuswaldner)

Let T be a planar crystallographic reptile with respect to the group Γ . Then T is disk-like iff the following three conditions hold:

- (i) the adjacent graph G_A is a connected planar graph,
- (ii) the digit set \mathcal{D} induces a connected subgraph in G_A ,
- (iii) G_N can be derived from G_A by joining each pair of vertices in the faces of G_A .

Criteria on the shape of the neighbor set

[Grünbaum, Shephard - 1987] There are finitely many possible sets (S, A) such that a disk-like crystallographic tile admits (S, A) as sets of neighbors and adjacent neighbors.

Criteria on the shape of the neighbor set

- [Grünbaum, Shephard 1987] There are finitely many possible sets (S, A) such that a disk-like crystallographic tile admits (S, A) as sets of neighbors and adjacent neighbors.
- Reciprocal statement for crystallographic reptiles ?

Lattice case

If \mathcal{F} is a subset of \mathcal{S} , the digit set \mathcal{D} is said to be \mathcal{F} -connected if for every pair (δ, δ') of digits there is a sequence

$$\delta \xrightarrow[\delta^{-1}\delta_1 \in \mathcal{F}]{} \delta_1 \xrightarrow[\delta_1^{-1}\delta_2 \in \mathcal{F}]{} \delta_2 \to \cdots \to \delta_{n-1} \xrightarrow[\delta^{-1}\delta' \in \mathcal{F}]{} \delta'$$

with $\delta_i \in \mathcal{D}$.

Lattice case

If \mathcal{F} is a subset of \mathcal{S} , the digit set \mathcal{D} is said to be \mathcal{F} -connected if for every pair (δ, δ') of digits there is a sequence

$$\delta \xrightarrow[\delta^{-1}\delta_1 \in \mathcal{F}]{} \delta_1 \xrightarrow[\delta_1^{-1}\delta_2 \in \mathcal{F}]{} \delta_2 \to \cdots \to \delta_{n-1} \xrightarrow[\delta_{n-1}^{-1}\delta' \in \mathcal{F}]{} \delta'$$

with $\delta_i \in \mathcal{D}$.

Theorem (Bandt, Wang - 2001)

Let T be a self-affine lattice plane tile with digit set \mathcal{D} .

- (1) Suppose that the neighbor set S of T has not more than six elements. Then T is disk-like iff D is S-connected.
- (2) Suppose that the neighbor set S of T has exactly the eight elements {a^{±1}, b^{±1}, (ab)^{±1}, (ab⁻¹)^{±1}}, where a and b denote two independent translations. Then T is disk-like iff D is {a^{±1}, b^{±1}}-connected.

A p2 group is a group of isometries generated by two independent translations and a $\pi\text{-rotation}.$

p2 case

A p2 group is a group of isometries generated by two independent translations and a $\pi\text{-rotation}.$

Theorem (with Luo J.)

Let T be a crystile that tiles the plane by a p2-group and $\mathcal D$ the corresponding digit set.

- (1) Suppose that the neighbor set S of T has six elements. Then T is disk-like iff D is S-connected.
- (2) Suppose that the neighbor set S of T has exactly the seven elements {b, b⁻¹, c, bc, a⁻¹c, a⁻¹bc, a⁻¹b⁻¹c}, where a, b are translations and c is a π-rotation. Then T is disk-like iff D is {b, b⁻¹, c, bc, a⁻¹c}-connected.
- (3) Similar results as (2) hold if S has 8 elements or 12 elements.

Example for p2 case

Figure:
$$g(x, y) = (y, 3x + 1)$$
, $\mathcal{D} = \{id, b, c\}$.

Open questions

• 17 planar crystallographic groups.

Open questions

- 17 planar crystallographic groups.
- Other topological properties (fundamental group).