# STURMIAN SUBSTITUTIONS, CUTTING PATHS AND THEIR PROJECTIONS

Sierk Rosema

swrosema@math.leidenuniv.nl

## Words

An alphabet A is a finite set of elements that are called *letters*. We take  $A = \{0, 1\}$ .

A word is a function u from a finite or infinite block of integers to  $\mathcal{A}$ . If this block of integers contains negative numbers we call u a *central* word. If a word u is finite, we denote by |u| the number of letters in u, and by  $|u|_a$  the number of occurrences of the letter a in u.

A word u is called *balanced* if  $||v|_0 - |w|_0| < 2$  for all subwords v, w of equal length. A finite word u is called *strongly balanced* if  $u^2$  is balanced. Here  $u^2$  is the concatenation of u with u.

A strongly balanced word is called a *Christoffel word* when it is smaller than each of its shifts in the lexicographic order (the zeros are placed as far to the left as possible).

#### Central progressions $w_u$

**Definition.** Let  $u = u(0) \dots u(m-1)$  be a strongly balanced finite word, containing both zeros and ones, with  $gcd(|u|_0, |u|_1) = 1$ . The *cutting path* in the *x*-*y*-plane corresponding to u consists of m + 1 integer points  $p_i$  given by  $p_i = (|u(0) \dots u(i-1)|_0, |u(0) \dots u(i-1)|_1)$  for  $i = 0, \dots, m$ , connected by line segments of lengths 1.

Draw the line through the origin and the end point of the path, given by  $y = \frac{|u|_1}{|u|_0}x$ . We project each integer point  $p_i$  on the cutting path parallel to this line onto the y-axis. By  $P(p_i)$  we denote the second coordinate of the projection of  $p_i$ . It is clear that  $P(p_0) = P(p_m) =$ 0. **Definition.** We define the function  $w_u$  as follows. If  $P(p_i) = k/|u|_0$  then  $w_u(-k) = i$ . We say  $w_u$  has the number *i* at position -k. We call  $w_u$  the *central progression* corresponding to *u*.

Some properties of a central progression  $w_u$  corresponding to  $u = u(0) \dots u(m-1)$ .

- Its domain is a block of integers of length m of  $\mathbbm{Z}$  containing 0.
- Its image is the set  $\{0, 1, ..., m-1\}$ .
- There exists a  $c \in \mathbb{Z}$  such that if k is in the domain of w, then  $w(k) \equiv ck \pmod{m}$ .

**Example 1.** Let u = 01001, then the central progression  $w_u$  is given by w = 20314.

#### Central words $v_w$

**Definition.** Let w be a central progression. Then the central word  $v_w$  is the word that you get by replacing every number in w that is smaller than its right neighbour by 0, and every number that is larger by 1.

**Example 2.** If u = 01001, then  $w_u = 20314$ , and  $v_w = 10101$ , where we underlined the letter at position 0. If u = 0110101101101, then  $w_u = 11 \ 3 \ 8 \ 0 \ 5 \ 10 \ 2 \ 7 \ 12 \ 4 \ 9 \ 1 \ 6$ , and  $v_w = 101001001000$ .

## **Sturmian substitutions**

A substitution  $\sigma$  is an application from the alphabet  $\mathcal{A} = \{0, 1\}$  to the set of finite words. It extends to a morphism by concatenation, that is,  $\sigma(uv) = \sigma(u)\sigma(v)$ .

A fixed point of a substitution  $\sigma$  is an infinite word u with  $\sigma(u) = u$ .

If  $\sigma$  is a substitution, we call

$$M_{\sigma} = \left(\begin{array}{cc} |\sigma(0)|_{0} & |\sigma(0)|_{1} \\ |\sigma(1)|_{0} & |\sigma(1)|_{1} \end{array}\right)$$

its incidence matrix.

A one-sided infinite word is *Sturmian* if it is balanced and not ultimately periodic.

We call a substitution  $\sigma$  over two letters *Sturmian* if  $\sigma(u)$  is a Sturmian word for every Sturmian word u.

Let  $\sigma$  be a Sturmian substitution that has incidence matrix with determiant 1 and a fixed point starting with 0, let  $u_n = \sigma^n(0)$ , let  $w_n = w_{u_n}$  and let  $v_n = v_{w_n}$  for n > 0.

**Example 3.** Let  $\sigma$  be the substitution defined by  $\sigma(0) = 010$ ,  $\sigma(1) = 01$ . Then  $\sigma$  is a Sturmian substitution with  $M_{\sigma} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ . We have

$$u_0 = 0$$
  

$$u_1 = 010$$
  

$$u_2 = 01001010$$
  

$$u_3 = 0100101001001001010$$
  
.....

This yields the following table of central progressions  $w_n$ .



We get the following table of central words.



Looking at the table above, we notice that if we define a substitution  $\tau$  by  $\tau(0) = 100$ ,  $\tau(1) = 10$ , then  $\tau(v_n) = v_{n+1}$  for each  $n \ge 0$ .

**Question.** For which substitutions  $\sigma$  does there exist a substitution  $\tau$  so that  $\tau(v_n) = v_{n+1}$  for each  $n \ge 0$ , and what can we say about  $\tau$ ?

**Theorem.** Let  $\sigma$  be a Sturmian substitution with  $\sigma(0)$  and  $\sigma(1)$  Christoffel words. Then  $\tau$  exists, and it is also a Christoffel substitution.

Example 4.

• 
$$\sigma : \begin{cases} 0 \rightarrow 00101 \\ 1 \rightarrow 01 \end{cases}$$
 gives  $\tau : \begin{cases} 0 \rightarrow 01011 \\ 1 \rightarrow 011 \end{cases}$   
•  $\sigma : \begin{cases} 0 \rightarrow 0010101 \\ 1 \rightarrow 01 \end{cases}$  gives  $\tau : \begin{cases} 0 \rightarrow 0110111 \\ 1 \rightarrow 0111 \end{cases}$   
•  $\sigma : \begin{cases} 0 \rightarrow 0101011 \\ 1 \rightarrow 01011 \end{cases}$  gives  $\tau : \begin{cases} 0 \rightarrow 000101 \\ 1 \rightarrow 001 \end{cases}$ 

From now on, assume  $\sigma$  is a Sturmian substitution that has incidence matrix with determiant 1, a fixed point starting with 0 and is NOT a Christoffel substitution. Put  $M_{\sigma} = \begin{pmatrix} a & b \\ c+ag & d+bg \end{pmatrix}$  with a+b > c+d.

Denote by e the number of values left of the 0 position in  $w_{\sigma(0)} = w_1$ , by f the number of values left of the 0 position in  $w_{\sigma(1)}$ , by p the number of zeros in  $v_1$  left of the underlined letter, and set r = e + b(f - p - eg).

**Example 5.** Let  $M_{\sigma} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$  and  $\sigma(0) = 01001$ ,  $\sigma(1) = 010010101001$ . Then g = 2,  $w_{\sigma(0)} = 2 \ 0 \ 3 \ 1 \ 4$ ,  $v_1 = 10101$  and  $w_{\sigma(1)} = 9 \ 2 \ 7 \ 0 \ 5 \ 10 \ 3 \ 8 \ 1 \ 6 \ 11 \ 4$ . Hence e = 1, f = 3, p = 0 and r = 3.

**Definition.** We denote by  $\tau$  the substitution that has

$$M_{\tau} := \begin{pmatrix} c+d+dg & a+b+bg-(c+d+dg) \\ c+dg & a+bg-(c+dg) \end{pmatrix}$$

as incidence matrix, and which is such that

- if we cyclically shift  $\tau(0)$  over r positions to the right, we get a Christoffel word,
- the (r+1)th letter of  $\tau(0)$  is underlined,
- $\tau(1)$  equals the left a + bg letters of  $\tau(0)$ .

**Example 5 (Continued).** We had  $M_{\sigma} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$ ,  $\sigma(0) = 01001, \ \sigma(1) = 0100101001$  and r = 3. We get  $M_{\tau} = \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}$  and  $\tau(0) = 0110101$ ,  $\tau(1) = 0110101$ . **Theorem.** Let  $\sigma$  be a Sturmian substitution that has an incidence matrix with determinant 1, that has a fixed point starting with 0, and that is not a Christoffel substitution. Let the Sturmian substitution  $\tau$  and the central word  $v_n$  for  $n \ge 1$  be defined as before. Then  $\tau(v_n) = v_{n+1}$ .

**Remark.** If the substitution  $\tau$  has a fixed point starting with 0, we can apply the procedure again, and call the result  $\phi$ . If g = 0 then  $M_{\phi} = M_{\sigma}$ , hence  $\phi(0), \phi(1)$  are cyclic shifts of  $\sigma(0), \sigma(1)$  respectively. In case  $\sigma$  is a Christoffel substitution, we get  $\phi = \sigma$ . This is not true in general.

**Example 6.** Let  $M_{\sigma} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$  and  $\sigma(0) = 0101101$ ,  $\sigma(1) = 01101$ . Then e = 1, f = 1, p = 0 and r = 5. We get  $M_{\tau} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$  and  $\tau(0) = 0100100$ ,  $\tau(1) = 010$ . Repeating this process, we get e = 4, f = 1, p = 1 and r = 4, which results in  $\phi(0) = 1011010$ ,  $\phi(1) = 10110$ .

## What if determinant is -1?

We can still form the central words  $v_n$ , except that for odd n, we need to reflect the central progressions  $w_n$  in the origin, before we construct  $v_n$  from  $w_n$ .

Since the substitution  $\sigma^2$  has incidence matrix with determinant 1, it is clear that there exists a substitution  $\tau_2$  such that  $v_{2n} = \tau_2(v_{2n-2})$ . But as the following example shows, there does not need to exist a substitution  $\tau$  such that  $v_n = \tau(v_{n-1})$ . **Example 7.** Let  $M_{\sigma} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$  and  $\sigma(0) = 0$ 001,  $\sigma(1) = 0$ . Then we get the following table for  $v_n$ .

| n |               |   |   |   |   |   |   |   |   |   |   |   | $v_n$    |   |   |   |   |
|---|---------------|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|
| 1 |               |   |   |   |   |   |   |   |   |   | 1 | 1 | 0        |   |   |   |   |
| 2 |               |   |   |   |   |   |   |   |   |   | 1 | 1 | <u>0</u> | 1 | 0 | 1 | 0 |
| 3 | 1             | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | <u>0</u> | 1 | 0 | 1 | 0 |
|   | · · · · · · · |   |   |   |   |   |   |   |   |   |   |   |          |   |   |   |   |

It is easy to check that there is no substitution  $\tau$  such that  $\tau(v_2) = v_3$ .

However, this example suggests that if we define  $\tau$  by  $\tau(\underline{0}) = 11\underline{0}$ ,  $\tau(1) = 10$ , and  $\tau(ab) = \tau(b)\tau(a)$  for every a, b in  $\mathcal{A}$ , then we have  $v_n = \tau(v_{n-1})$ .

An interesting question is if similar functions exist for all Sturmian substitutions that have an incidence matrix with determinant -1.