Counting lattice points of polytopes in terms of their orthant parts
Oliver Pfeiffer (Wien)

For $N \geq 0$ let \mathscr{P}_{N} be a sequence of polytopes such that each polytope has the same full dimension N as the underlying Euclidian space \mathbb{R}^{N}. Motivated by earlier results for the regular octahedron (cf. [1]) we inspect the correlation between the lattice point count of \mathscr{P}_{N} and of its 2^{N} orthant parts

$$
\mathscr{Q}_{N, \varepsilon}=\mathscr{P}_{N} \cap\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N} \mid \varepsilon_{n} x_{n} \geq 0,1 \leq n \leq N\right\}
$$

for $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right) \in\{-1,1\}^{N}$, under the condition that the $\mathscr{Q}_{N, \varepsilon}$ possess certain intersection properties.
[1] P. Kirschenhofer, A. Pethő and R. F. Tichy: On analytical and Diophantine properties of a family of counting polynomials. Acta Sci. Math. (Szeged), 65 (1999), 47-59.

