The sum of digits of primes Thu/Epcos
 Michael Drmota* (TU Wien), Christian Mauduit (Univ. Marseille), Joël Rivat 10:30-10:50 (Univ. Marseille)

It is relatively easy to show that the average number of non-zero binary digits of primes $<x$ is almost the same as the average number of non-zero binary digits of all natural numbers $<x$, namely $(1 / 2) \log _{2} x+O(1)$.

The main purpose of this talk is to provide asymptotic expansions for the number of primes $<x$ with precisely k non-zero binary digits for k close to $(1 / 2) \log _{2} x$.

The proof is based on a thorough analysis of exponential sums involving the sum-of-digits function (that is related to a recent solution of problem of Gelfond) and a refined central limit theorem for the sum-of-digits function of primes. Interestingly this result answers a question that is contributed to Ben Green whether for every given k there exists a prime with k non-zero binary digits. There is also a very nice relation to the Thue-Morse sequence.
[1] M. Drmota, C. Mauduit and J. Rivat: Primes with an Average Sum of Digits, Compositio Math., to appear.
[2] C. Mauduit and J. Rivat: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math, to appear.

