A mean-square bound for the lattice discrepancy of a torus in \mathbb{R}^{3} Victor Garcia* (Univ. Bodenkultur, Wien), Werner Georg Nowak (Univ. Bodenkultur, Wien)

For any compact body \mathscr{B} in \mathbb{R}^{3} and a large real variable t, the lattice point discrepancy of the linearly dilated body $t \mathscr{B}$ is defined by

$$
P_{\mathscr{B}}(t):=\#\left(\mathbb{Z}^{3} \cap t \mathscr{B}\right)-\operatorname{vol}(\mathscr{B}) t^{3} .
$$

This talk will concentrate on mean-square estimations concerning this quantity. In fact, for $\mathscr{B}=\mathscr{B}_{0}$ the unit ball in \mathbb{R}^{3}, it has been proved by V. Jarnik in 1940 that, for some positive constant c,

$$
\int_{0}^{T}\left(P_{\mathscr{B}_{0}}(t)\right)^{2} \mathrm{~d} t \sim c T^{3} \log T
$$

For a general convex body \mathscr{B} in \mathbb{R}^{3} with smooth boundary of nonvanishing Gaussian curvature, A. Iosevich, E. Sawyer, and A. Seeger [2] recently established the comparable upper bound $O\left(T^{3}(\log T)^{2}\right)$.

The generic example of a non-convex body bounded by a smooth surface of genus 1 is the torus $\mathscr{T}=\mathscr{T}_{a, b}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
(a+r \cos \alpha) \cos \beta \\
(a+r \cos \alpha) \sin \beta \\
r \sin \alpha
\end{array}\right), \quad 0 \leq \alpha, \beta<2 \pi, \quad 0 \leq r \leq b,
$$

with fixed constants $a>b>0$. It is known that

$$
P_{\mathscr{T}}(t)=\mathscr{F}_{a, b}(t) t^{3 / 2}+\Delta_{\mathscr{T}}(t) .
$$

Here $\mathscr{F}_{a, b}(t)$ is an explicit continuous periodic function, while $\Delta_{\mathscr{T}}(t) \ll t^{\frac{3}{2}-\frac{1}{286}+\varepsilon}$ according to D. Popov [4], and $\Delta_{\mathscr{T}}(t) \ll t^{\frac{3}{2}-\frac{1}{8}+\varepsilon}$ according to W.G. Nowak [3]. The main term $\mathscr{F}_{a, b}(t) t^{3 / 2}$ comes from the infinitely many points of Gaussian curvature zero on the boundary.

The goal of this talk is to sketch the argument leading to the (possibly expected) mean-square bound

$$
\int_{0}^{T}\left(\Delta_{\mathscr{T}}(t)\right)^{2} \mathrm{~d} t \ll T^{3+\varepsilon}
$$

[1] V.C. Garcia and W.G. Nowak, A mean-square bound concerning the lattice discrepancy of a torus in \mathbb{R}^{3}, manuscript.
[2] A. Iosevich, E. Sawyer, and A. Seeger, Mean square discrepancy bounds for the number of lattice points in large convex bodies, J. Anal. Math. 87 (2002), 209-230.
[3] W.G. Nowak, The lattice point discrepancy of a torus in \mathbb{R}^{3}, Acta Math. Hung. 120 (2008), 179-192.
[4] Popov D. Popov, On the number of lattice points in three-dimensional bodies of revolution, Izv. Math. 64 (2000), 343-361. Translation from Izv. RAN, Ser. Mat. 64 (2000), 121-140.

