How to count polyominoes and polycubes

Günter Rote (Freie Univ. Berlin)
We have analyzed the growth in the number of polyominoes on a twisted cylinder as the number n of cells increases, by using computers [1]. The polyominoes on these surfaces are related to the classical polyominoes (connected subsets of a square grid) that lie in the plane. We have thus obtained the current best lower bound of 3.980137 on Klarner's constant, the growth rate of the number of polyominoes.

We have also obtained explicit formulas for the numbers polycubes, highdimensional analogs of polyominoes, for those cases where the number d of dimensions that are spanned by a polycube is not much smaller than n. In particular, for $d=n-1$ (the largest possible value of d), there are $2^{n-1} n^{n-3}$ polycubes, for $d=n-2$, there are $2^{n-3} n^{n-5}(n-2)\left(2 n^{2}-6 n+9\right)$ polycubes, and for $d=n-3$, there are $2^{n-6} n^{n-7}(n-3)\left(12 n^{5}-104 n^{4}+360 n^{3}-679 n^{2}+1122 n-1560\right) / 3$. These formulas are based on a correspondence with directed spanning trees and on an inclusion-exclusion principle, counting certain "substructures" that may appear in polcubes [2]. Such formulas have been proposed without rigorous proofs in the statistical-physics literature [3].
[1] G. Barequet, M. Moffie, A. Ribó, G. Rote: Counting polyominoes on twisted cylinders. INTEGERS: The Electronic Journal of Combinatorial Number Theory 6 (2006), article \#A22, 37 pages.
[2] R. Barequet, G. Barequet, and G. Rote: Formulae and growth rates of highdimensional polycubes. Combinatorica, to appear.
[3] P.J. Peard and D.S. Gaunt, 1/d-expansions for the free energy of lattice animal models of a self-interacting branched polymer, J. Phys. A: Math. Gen. 28 (1995), 6109-6124.

