Quadrics of Revolution Through Given Points
Anton Gfrerrer (TU Graz)

The problem of determining all cylinders of revolution through 4 given points P_{i} has been solved by H. SchaAl [1, 2]: There is a 1-parametric set of such cylinders and in case of non-coplanar points P_{i} their axes fulfill an algebraic surface of degree 3 . The task of determining all cylinders of revolution through 5 points is an algebraic problem of order 6: In the generic case there exist 6 solution cylinders at most [5]. The cones of revolution through 4 given points establish a 2-parametric set, the locus of vertices is an algebraic surface of order 14 , see [3,4].

In my presentation I introduce a unified approach to identifying different kinds of quadrics of revolution through a given number n of points. With this method it can be easily seen that the axes of the 1-parametric set of quadrics of revolution through 6 prescribed points intersect the plane of infinity along a conic section. Moreover I will show that there are at most 4 quadrics of revolution through 7 given points and at most 12 cones of revolution through 6 given points in the generic case. The fore-mentioned task of determining the cylinders of revolution through 5 points can also be treated by the introduced method. In each case I can give examples where the maximal solution numbers 4,12 and 6 are obtained by real quadrics, cones and cylinders of revolution, respectively.
[1] H. Schatl: Ein geometrisches Problem der metrischen Getriebesynthese. Sb. d. Österr. Akad. d. Wiss., math.-nat. Klasse, Abt II 194, Heft 1-3 (1985), 39-53.
[2] H. Schata: Konstruktion der Drehzylinder durch vier Punkte einer Ebene. Sb. d. Österr. Akad. d. Wiss., math.-nat. Klasse, Abt II 195, Heft 4-7 (1986), 406-418.
[3] U. Strobel: Über die Drehkegel durch vier Punkte. Sb. d. Österr. Akad. d. Wiss., math.-nat. Klasse 198 (1989), 281-293.
[4] U. Strobel: Über die Drehkegel durch vier Punkte. Teil II. Sb. d. Österr. Akad. d. Wiss., math.-nat. Klasse 200 (1991), 91-109.
[5] P.J. Zsombor-Murray, S. El Fashny: A cylinder of revolution on five points, Journal for Geometry \& Graphics 10, 2 (2007), 125-131.

