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Backward differentiation (BDF) schemes of lower orders are well-known for their
favorable stability properties like strongA(α)-stability. Even for the scalar stiff
modely′ = λy, however, sharp stability estimates are not straightforward due to
the presence of parasitic roots of the characteristic equation. In particular, the dis-
tribution (separation) of these roots is not obvious in the region near the boundary
of the stability domain, i.e., for mildly stiff situations (typically: small stepsizeh
together with moderate degree of stiffness). Since BDF schemes are widely used,
a precise description of the spectrum is of interest.

In [1], the location of parasitic roots as compared to the principal root was
studied, and it was shown that for orders up to 5, there is a uniform ‘gap’ be-
tween these roots in the mildly stiff case, which enables quantitative estimates for
the worst-case propagation of perturbations for an arbitrary degree of stiffness.
(For larger stepsizes such an estimate is straightforward due to strong stability.)
For the BDF 2 method this analysis is rather simple. It shows that, for uniform
stepsizes, BDF 2 is comparable to backward Euler in this respect. For the higher
order schemes, the uniform, quantitative estimation of thelocation of parasitic
roots requires a rather intricate analysis based on bivariate polynomial algebra
and techniques from complex analysis.

These results can also be used for a more precise characterization of the sta-
bility of BDF schemes for general linear evolution equations, and as a tool in the
derivation of a non-classical, perturbed asymptotic expansion of the global error.
In particular, in [2] such a result is derived for the BDF 2 scheme applied to an
abstract parabolic problem, assuming a a sufficiently smooth solution. The anal-
ysis is based on discrete resolvent calculus and G-stability. Under quite general
assumptions, we obtain a representation for the global error eν of the form

eν = h2e2(tν)+h3e3(tν)+ων (tν = νh).

Here,e2(t) ande3(t) are smooth,h-independent functions. The remainderων be-
haves likeO(h3) at the first grid points but is quickly damped out with increasing
ν . This closely resembles the behavior of the backward Euler scheme studied in
earlier work.
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