A 2-approximation for 2D Bin Packing
TuE/AE01
Klaus Jansen (Univ. Kiel), Lars Prädel (Univ. Kiel), Ulrich Schwarz* (Univ.

We study the two-dimensional geometrical bin packing problem (2DBP): given a list of rectangles, provide a packing of all these into the smallest possible number of 1×1 bins without rotating the rectangles. This problem is the obvious generalization of the classical (one-dimensional) bin packing problem and has a wide variety of practical applications, such as ad placement and VLSI chip design.

Unlike the one-dimensional counterpart, 2DBP cannot be approximated to $2-$ ε in polynomial time, whether or not the items may be rotated, and it does not admit an asymptotical approximation scheme (APTAS).

We present a 2-approximation algorithm, which improves over the previous best known ratio of 3 , matches the best results for the rotational case and also matches the known lower bound of approximability. Our approach combines a previously known algorithm with asymptotic ratio better than two [3] with a recently-discovered PTAS [2] for a related 2D knapsack problem and a new algorithm that can pack instances into OPT +2 bins for any constant OPT.
[1] Jansen, K., Prädel, L., Schwarz, U. M.: A 2-approximation for 2D bin packing. Technical Report 0904, Universität Kiel, 2009.
[2] Jansen, K., Prädel, L.: How to maximize the total area of rectangles packed into a rectangle? Technical Report 0908, Universität Kiel, 2009.
[3] Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithms for multidimensional bin packing problems. In: Proceedings of FOCS 2006.

