Deformations of complexity-one rational *T***-varieties**

Nathan Ilten* (Freie Univ. Berlin), Andreas Hochenegger (Freie Univ. Berlin), Robert Vollmert (Freie Univ. Berlin)

Let X_0 be any rational normal variety with an effective action by some torus T of codimension one. In [2], R. Vollmert and I developed a combinatorial construction with which one can describe homogeneous deformations $\pi : X \to S$ of such X_0 . If X_0 is smooth, complete, and toric, these deformations span the space of infinitesimal deformations. In fact, in this case, $H^1(X_0, \mathscr{T}_{X_0})$ can be easily read off from the fan corresponding to X_0 , see [1].

It turns out that if π is locally trivial, for any point $s \in S$ there exists a natural map π_s^0 : T-CaDiv(X_s) \rightarrow T-CaDiv(X_0), where T-CaDiv denotes the group of *T*-invariant Cartier divisors; this map is one of the subjects of study in [3]. Some of the main results can be summarized as follows:

THEOREM. If X_0 is complete, then the map of divisors π_s^0 induces an isomorphism of Picard groups $\bar{\pi}_s^0$: $Pic(X_s) \to Pic(X_0)$ such that for every $\mathcal{L} \in Pic(X_s)$,

1. $\chi(\bar{\pi}_s^0(\mathscr{L})) = \chi(\mathscr{L});$ 2. $h^i(\bar{\pi}_s^0(\mathscr{L})) \ge h^i(\mathscr{L})$ for all $i \ge 0$.

In this talk, I will outline these recent results in a form requiring no prior knowledge of toric geometry. In a following talk, A. Hochenegger will apply some of these results to the study of exceptional sequences of lines bundles on rational \mathbb{C}^* -surfaces.

- [1] N. ILTEN: Deformations of Smooth Toric Surfaces. arXiv:0902.0529v3 [math.AG], 2009.
- [2] N. ILTEN AND R. VOLLMERT: *Deformations of Rational T-Varieties*. arXiv:0902.0529v3 [math.AG], 2009.
- [3] A. HOCHENEGGER AND N. ILTEN: Families of Divisors on T-Varieties and Exceptional Sequences on C^{*}-Surfaces. arXiv:0906.4292v1 [math.AG], 2009.

Тн∪/110 11:30–11:50