Nonlinear optics equation in the quarterplane

Alexander Sakhnovich (Univ. Wien)
The nonlinear optics equation

$$
\left[D, g_{t}\right]-\left[\widehat{D}, g_{x}\right]=[[D, g],[\widehat{D}, g]]
$$

where $g=g^{*}$ is an $m \times m$ matrix function, $g_{k k} \equiv 0$,

$$
\begin{array}{lll}
D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}>0, & d_{k} \neq d_{j} & (k \neq j), \\
\widehat{D}=\operatorname{diag}\left\{\widehat{d}_{1}, \widehat{d}_{2}, \ldots, \widehat{d}_{m}\right\}>0, & \widehat{d_{k}} \neq \widehat{d}_{j} & (k \neq j) .
\end{array}
$$

is treated in this talk. We consider the evolution of the Weyl function of the auxiliary linear system $Y_{x}(x, t, z)=(i z D-[D, g(x, t)]) Y(x, t, z)$, solve the corresponding inverse problem and obtain solution of the nonlinear optics equation in the quarterplane. Sufficient conditions when the procedure is well-defined and the solution is unique are given. The talk is based on the paper [1] and references therein.
[1] A. L. Sakhnovich: Weyl functions, inverse problem and special solutions for the system auxiliary to the nonlinear optics equation. Inverse Problems 24 (2008) 025026.

