1

The sum of digits of squares in the Gaussian Integers

Тн∪/Ерсоs 12:00–12:20

Johannes Morgenbesser (TU Wien)

Inspired by recent results of Mauduit and Rivat [1] and of Drmota, Rivat and Stoll [2] we study the complex sum-of-digits function s_q for squares with respect to a base q of a canonical number system in the Gaussian integers $\mathbb{Z}[i]$. In particular, we show that the sequence $(\alpha s_q (n^2))_{n \in \mathbb{Z}[i]}$ is uniformly distributed modulo 1 if and only if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Furthermore we introduce special sets of Gaussian integers (related to Følner sequences) for which we can determine the order of magnitude of the number of integers z for which $s_q (z^2)$ lies in a fixed residue class mod m. We prove also a local limit theorem for the sum-of-digits function of squares. For example, we can provide asymptotic expansions for the numbers $\# \{n \in C_N : s_q (n^2) = k\}$ where C_N is a segment of a disc with angle γ and radius \sqrt{N} . Estimates of exponential sums, the study of Fourier transforms and probabilistic methods play a crucial role in proving these results.

- [1] C. MAUDUIT AND J. RIVAT: La Somme des Chiffres des Carrés. Acta Mathematica, to appear
- [2] M. DRMOTA, J. RIVAT AND T. STOLL: *The sum of digits of primes in* $\mathbb{Z}[i]$. Monatshefte für Mathematik, 2008