Random Walks on Directed Covers of Graphs

Lorenz A. Gilch* (TU Graz), Sebastian Müller (TU Graz)
Suppose we are given a connected, directed graph G with vertex set V, edge set E (without multiple edges), and root i_{0}. We construct a labelled tree \mathscr{T} from G as follows: the root is labelled with i_{0}; recursively, if x is a vertex in the tree with label $i \in V$, then x has a successor with label j if and only if there is an edge from i to j in G. The tree \mathscr{T} is called the directed cover of G, or also known as periodic tree. We consider a nearest neighbour random walk on \mathscr{T} which arises in a natural way from a nearest neighbour random walk on G.

We expand the existing theory of directed covers of finite graphs to those of infinite graphs. We give a short comparision of behaviour in the finite setting, when G is finite, and in our more general setting of infinite G. This comparision includes the classification of recurrence/transience behaviour and (in)equality of upper and lower growth rate of \mathscr{T}. The main result is the proof of existence and positivity of the the asymptotic entropy under reasonable assumptions. That is, we prove that there is a number $h>0$ such that $h=\lim _{n \rightarrow \infty} n^{-1} \log \pi^{(n)}\left(X_{n}\right)$, where X_{n} is the random vertex at which the random walk is at time n and $\pi^{(n)}(\cdot)$ is the distribution of X_{n}. Moreover, our proof gives an explicit formula which is also a new result for directed covers of finite graphs.
[1] T. Nagnibeda and W. Woess: Random walks on trees with finitely many cone types. J. Theoret. Probab., 2002, pp. 399-438.
[2] R. Lyon and Y. Peres: Probability on Trees and Networks. In preparation. Current version available at mypage.iu.edu/~rdlyons/, 2008.
[3] I. Benjamini and Y. Peres: Tree-indexed random walks on groups and first passage percolation. Probab. Theory Related Fields, 1994, pp. 91-112.

