Combinatorial properties of a general domination problem with parity constraints

Johannes Hatzl* (TU Graz), Stephan Wagner (Univ. Stellenbosch)

We consider various properties of a general parity domination problem: given a graph G on n vertices, one is looking for a subset S of the vertex set such that the open/closed neighborhood of each vertex contains an even/odd number of vertices in S (it is prescribed individually for each vertex which of these applies). This problem is motivated by the following remarkable result of Sutner [3]:

Theorem. For every graph $G=(V, E)$, there exists a set $S \subseteq V$ such that $|N[v] \cap S|$ is odd for every $v \in V$.

In this talk, we define the parameter $s(G)$ (see [2]) to be the number of solvable instances out of 4^{n} possibilities and study the properties of this parameter. Upper and lower bounds for general graphs and trees are given as well as a remarkable recurrence formula for rooted trees. Furthermore, we give explicit formulas in several special cases and investigate random graphs.
Finally, we discuss the problem of finding such a set S with minimum cardinality. It is well known that this problem is $\mathscr{N} P$-hard in general. However, it can be solved in linear time on graphs with bounded tree width and distance-hereditary graphs (see [1]).
[1] E. GASSNER, J. HatZL: A parity domination problem in graphs with bounded tree width and distance-hereditary graphs. Computing 82 (2008), 171-187.
[2] J. Hatzl, S. WAGNER: Combinatorial properties of a general domination problem with parity constraints. Discrete Mathematics 308 (2008), 6355-6357.
[3] K. Sutner: Linear cellular automata and the Garden-of-Eden Math. Intelligencer 11 (1989), 49-53.

