Additive functions on polynomial sequences
 Manfred Madritsch (Univ. Caen)

Let $q \geq 2$ be an integer. Then we can represent every positive integer n in a unique way as follows

$$
n=\sum_{r \geq 0} d_{r}(n) q^{r} \quad \text { with } \quad d_{r}(n) \in\{0, \ldots, q-1\}
$$

We call this the q-ary representation of n with q the base and $\{0, \ldots, q-1\}$ the set of digits.

If a function f acts only on the digits of a representation and is independent of the position of the digit, we call it strictly q-additive, i.e.,

$$
f(n)=\sum_{r \geq 0} f\left(d_{r}(n)\right)
$$

where n is as above.
A simple example of such a function is the sum-of-digits function s_{q} which is defined by

$$
s_{q}(n)=\sum_{r \geq 0} d_{r}(n),
$$

where n again is as above. In the present talk we want to concentrate on the summatory function of f. For the case of the sum-of-digits function Delange [1] was able to show

$$
\sum_{n \leq N} s_{q}(n)=\frac{q-1}{2} N \log _{q} N+N F\left(\log _{q} N\right)
$$

where $\log _{q}$ is the logarithm to base q and F a 1-periodic, continuous and nowhere differentiable function.

In the present talk we want to extend this result on the one hand to arbitrary strict q-additive functions f and on the other hand to polynomial sequences. Let μ_{f} be the mean of the values of f, i.e.,

$$
\mu_{f}:=\frac{1}{q} \sum_{a=0}^{q-1} f(a)
$$

Then our main result reads as follows.
THEOREM. Let $q \geq 2$ be an integer, f be a strictly q-additive function and p be a polynomial of degree $k \geq 1$. Then there are $c \in \mathbb{R}$ and $\varepsilon>0$ such that

$$
\sum_{n \leq N} f(\lfloor p(n)\rfloor)=\mu_{f} N \log _{q}(p(N))+c N+N F\left(\log _{q}(p(N))\right)+\mathscr{O}\left(\frac{N}{\log N}\right)
$$

where $\lfloor x\rfloor$ is the greatest integer less than x and F is a 1-periodic function depending on q, f and p.
[1] H. Delange: Sur la fonction sommatoire de la fonction"somme des chiffres", Enseignement Math. (2) 21 (1975), no. 1, 31-47.

