Monotone Curves
TuE/110
Eva Kopecká* (Univ. Linz), Bernd Kirchheim (Univ. Düsseldorf), Stefan Müller 10:30-10:50 (Univ. Bonn)

Let L be a family of K closed linear subspaces of ℓ_{2}, and $z_{0} \in \ell_{2}$. Consider the sequence of projections $z_{i}=P_{k_{i}} z_{i-1}$, where P_{k} denotes the orthogonal projection on the k-th space in L. According to Amemiya and Ando, the orbit $\left\{z_{i}\right\}$ always converges weakly. If $K=2$ the sequence of projections even converges in norm according to a classical result of von Neumann. If $K \geq 3$, this is known only under additional assumptions, for example, if the sequence $\left\{k_{i}\right\}$ is periodic.

We estimate the rate of convergence of products of projections on K finite dimensional or finite co-dimensional subspaces in ℓ_{2}. The current proof gives dependence of the estimate on both the number of the subspaces K and on their maximal finite dimension (or codimesion) n. Dropping the dependence on n would result in the norm-convergence of the orbit of a point under any sequence of projections on finitely many closed subspaces of ℓ_{2}.

In connection with projections we stumbled upon the following curious question. The intuitive answer to it is "obviously no", but we do not know any really simple proof of this "obvious fact". Here is the question:

Let e_{1} and e_{2} be two orthogonal vectors in the unit sphere of ℓ_{2}. Given a small $\varepsilon>0$, does there exist a piecewise linear curve γ connecting e_{1} with $(1-\varepsilon) e_{2}$, so that the distance from the origin decreases along γ and all segments of γ are parallel to at most, say, 5 different vectors?

Using the methods we developed for products of projections, we show that for small $\varepsilon>0$ there is no such a curve.

