48. Finden Sie für differenzierbare Funktionen f und g bzw. ein Vektorfeld \vec{V} Vereinfachungen für die folgenden Ausdrücke:

(a)
$$\nabla fg$$
 (b) $\nabla f\vec{V}$ (c) $\nabla \times f\vec{V}$

49. Zeigen Sie die folgenden Gleichungen für Vektorfelder \vec{V} und \vec{W} (beachten Sie die richtige Interpretation der Wirkung von ∇ !)

$$(a) \quad \nabla \times (\vec{V} \times \vec{W}) = (\vec{W} \cdot \nabla)\vec{V} - (\vec{V} \cdot \nabla)\vec{W} - (\nabla \cdot \vec{V})\vec{W} + (\nabla \cdot \vec{W})\vec{V}$$

(b)
$$\nabla \times (\nabla \times \vec{V}) = \nabla(\nabla \vec{V}) - \Delta \vec{V}$$

(c)
$$\nabla(\vec{V} \cdot \vec{W}) = (\vec{V}\nabla)\vec{W} + (\vec{W}\nabla)\vec{V} + \vec{V} \times (\nabla \times \vec{W}) + \vec{W} \times (\nabla \times \vec{V}).$$

50. Bestimmen Sie zu dem quellenfreien Vektorfeld

$$\vec{V}(x,y,z) = \begin{pmatrix} 2x + yz \\ -y - xz \\ -z + xy \end{pmatrix}$$

ein Vektorpotential.

51. Sei $\vec{V}:U\to\mathbb{R}^3$ ein wirbelfreies Vektorfeld und U ein bezüglich $\vec{0}$ sternförmiges Gebiet. Sei

$$\phi(\vec{x}) = \int_0^1 \vec{V}(t\vec{x}) \cdot \vec{x} \, dt$$

das zugehörige Potential. Berechnen Sie unter Verwendung geeigneter Identitäten für ∇ (analog zur Vorlesung) $\nabla \phi$.

52. Die Funktionen f_n und g_n $(n \in \mathbb{N}_0)$ sind durch

$$f_n(x,y) = \text{Re}(x+iy)^n$$
 und $g_n(x,y) = \text{Im}(x+iy)^n$

gegeben $(i^2 = -1)$. Zeigen Sie, dass diese Funktionen die Gleichung $\Delta f_n = \Delta g_n = 0$ erfüllen. Rechnen Sie diese Funktionen in ebene Polarkoordinaten um.