Advanced and algorithmic graph theory

Summer term 2017

Exercise sheet 1

Exercises for the exercise session on 20/03/2017

Problem 1.1. Let G be a weighted graph. For i = 1, 2, 3, 4, denote by T_i a spanning tree that is generated by Algorithm *i* from the lecture. Reminder:

- Alg. 1: Recursively add edges of smallest weight that do not create cycles.
- Alg. 2: Recursively delete edges of largest weight that do not separate.
- Alg. 3: Start at a vertex v and recursively connect new vertices to the current tree with an edge of smallest weight.
- **Alg. 4:** (Only applicable if all edge weights are distinct) Perform Algorithm 3 in parallel from each vertex.

Prove that each spanning tree T_i has minimum total weight among all spanning trees of G. If all weights are distinct, prove that there is a unique spanning tree of minimum weight.

Hint. For i = 1, 2, 3, let T be a spanning tree of minimum total weight with as many edges in common with T_i as possible. For i = 4, let T be any spanning tree of minimum weight. In either case, prove that $T \neq T_i$ implies that there is a tree of smaller weight than T.

Problem 1.2. Let G be a graph with at least two vertices. Prove that

$$\kappa(G) \le \lambda(G) \le \delta(G).$$

For every integer $k \geq 1$, construct graphs G_1, G_2 with

$$\kappa(G_1) = 1, \ \lambda(G_1) = \delta(G_1) = k,$$

 $\kappa(G_2) = \lambda(G_2) = 1, \ \delta(G_2) = k.$

Problem 1.3. For a graph G, we define the *line graph* L(G) to be the graph with vertex set E(G) and an edge between e and f iff e and f share a vertex.

Prove that for every G with at least three vertices and one edge (why do we need these extra conditions?) we have

$$\kappa(L(G)) \ge \lambda(G).$$

Give an example of a connected G for which the two values are not the same.

Problem 1.4. Let G be a graph and let a, b be two distinct vertices of G. Suppose that each of the vertex sets $X, X' \subseteq V(G) \setminus \{a, b\}$ is an *a-b* separator. Denote by C_a and C_b the component of G - X that contains a and b, respectively. Define C'_a and C'_b analogously for X'. Prove that the sets

$$Y_a := (X \cap C'_a) \cup (X \cap X') \cup (X' \cap C_a),$$

$$Y_b := (X \cap C'_b) \cup (X \cap X') \cup (X' \cap C_b)$$

are a-b separators as well.

Problem 1.5. Let G, a, b, X, X', Y_a, Y_b be as in Problem 1.4. Prove that X is a minimal *a-b* separator iff each vertex in X has neighbours in both C_a and C_b . If both X and X' are minimal *a-b* separators, are Y_a and Y_b minimal as well? Do Y_a and Y_b have smallest size (among all separators in $V \setminus \{a, b\}$) if both X and X' have?

Problem 1.6. Let G be k-connected, where $k \ge 2$. Prove that for each set of k vertices in G, there is a cycle in G that contains them all.