Tutorium Mathematik I, M 18. November 2016

*Aufgabe 1. Die Folge $(a_n)_{n\in\mathbb{N}}$ ist rekursiv durch

$$a_1 = -6, \quad a_2 = 6, \quad a_3 = -42$$

und $a_n = a_{n-1} + 4a_{n-2} - 4a_{n-3}$ für $n \ge 4$

definiert.

- (a) Bestimmen Sie eine explizite Darstellung für a_n .
- (b) Bestimmen Sie alle Häufungspunkte sowie gegebenenfalls den Limes Superior und Limes Inferior der Folge.

Aufgabe 2. Bestimmen Sie explizite Darstellungen für die folgenden rekursiv definierte Folgen. Desweiteren bestimmen Sie alle Häufungspunkte, und gegebenenfalls den Limes Superior, Limes Inferior und Grenzwert.

(a)
$$a_1 = 30$$
, $a_2 = 48$
 $a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$ für $n \ge 3$
(b) $a_1 = 52$, $a_2 = 44$
 $a_n = 2a_{n-1} + 15a_{n-2}$ für $n \ge 3$
(c) $a_1 = 11$, $a_2 = 55$, $a_3 = 47$,
 $a_n = 13a_{n-2} - 12a_{n-3}$ für $n \ge 4$
(d) $a_1 = 8$, $a_2 = 42$, $a_3 = 8$,
 $a_n = -a_{n-1} + 25a_{n-2} + 25a_{n-3}$ für $n \ge 4$
(e) $a_1 = 5$, $a_2 = 5$, $a_3 = 35$, $a_4 = 65$,
 $a_n = 13a_{n-2} - 36a_{n-4}$ für $n > 5$

Die mit * markierten Aufgaben werden vom Vortragenden präsentiert, die restlichen Aufgaben sind von den Studierenden zu bearbeiten.

Lösung von Aufgabe 2

- (a) $a_n = 42 \cdot 1^n + 24 \left(-\frac{1}{2}\right)^n$. Die Folge konvergiert gegen 42. Dieser Punkt ist damit der einzige Häufungspunkt, sowie auch Limes Superior und Limes Inferior.
- (b) $a_n = 5 \cdot 5^n 9(-3)^n$. Es gibt keine Häufungspunkte, also auch keinen Limes Superior, Limes Inferior oder Grenzwert (jedoch gilt $\lim_{n\to\infty} a_n = \infty$).
- (c) $a_n = 3 \cdot 1^n + 1 \cdot (-4)^n + 4 \cdot 3^n$. Es gibt keine Häufungspunkte, also auch keinen Limes Superior, Limes Inferior oder Grenzwert.
- (d) $a_n = -8(-1)^n + 5^n + (-5)^n$. Die Folge hat einen Häufungspunkt bei 8 also sind auch Limes Superior und Limes Inferior 8. Der Grenzwert existiert nicht.
- (e) $a_n = 0 \cdot 2^n (-2)^n + 3^n + 0 \cdot (-3)^n$. Es gibt keine Häufungspunkte, also auch keinen Limes Superior, Limes Inferior oder Grenzwert (jedoch gilt $\lim_{n\to\infty} a_n = \infty$).