Tutorium Mathematik I, M

2. Dezember 2016

*Aufgabe 1. Bestimmen Sie den größtmöglichen Definitionsbereich der folgenden reellen Funktionen sowie die Bereiche, auf denen sie monoton steigend beziehungsweise monoton fallend sind.

(a)
$$f(x) = \frac{-1}{x^2 + x - 6}$$
 (b) $g(x) = \sqrt{\cos(x)}$

Aufgabe 2. Bestimmen Sie den größtmöglichen Definitionsbereich der folgenden reellen Funktionen sowie die Bereiche, auf denen sie monoton steigend beziehungsweise monoton fallend sind.

(a)
$$f_1(x) = \frac{1}{e^{1/x} - 2}$$
 (b) $f_2(x) = \sqrt{\frac{1}{2} - \sin(x)}$
(c) $f_3(x) = \tan\left(\frac{1}{x}\right)$ (d) $f_4(x) = \arcsin\left(\sqrt{x^2 - 3}\right)$
(e) $f_5(x) = e^{\frac{1}{x} + 2} - e^x$ (f) $f_6(x) = \ln\left(2x^2 - 3x - 2\right)$
(g) $f_7(x) = \frac{1}{\ln\left(\frac{1}{x}\right)}$ (h) $f_8(x) = e^{x^3 - 3x^2 + 3x - 1}$

Die mit * markierten Aufgaben werden vom Vortragenden präsentiert, die restlichen Aufgaben sind von den Studierenden zu bearbeiten.

Lösung von Aufgabe 2

(a) Definitionsbereich ist

$$D_1 = \mathbb{R} \setminus \left\{ 0, \frac{1}{\ln 2} \right\}.$$

 f_1 ist auf $(-\infty,0) \cup (0,\frac{1}{\ln 2})$ und auf $(\frac{1}{\ln 2},\infty)$ streng monoton steigend, aber nicht auf ganz D_1 .

(b) Definitionsbereich ist

$$D_2 = \bigcup_{n \in \mathbb{Z}} \left[\left(2n - \frac{7}{6} \right) \pi, \left(2n + \frac{1}{6} \right) \pi \right].$$

Auf jedem Intervall $\left[\left(2n-\frac{1}{2}\right)\pi,\left(2n+\frac{1}{6}\right)\pi\right]$ ist f_2 streng monoton steigend.

Auf jedem Intervall $\left[\left(2n-\frac{7}{6}\right)\pi,\left(2n-\frac{1}{2}\right)\pi\right]$ ist f_2 streng monoton fallend.

(c) Definitionsbereich ist

$$D_3 = \mathbb{R} \setminus \left(\{0\} \cup \left\{ \frac{1}{(n+1/2)\pi} \mid n \in \mathbb{Z} \right\} \right).$$

 f_3 ist in jedem Teilinterval, in dem sie definiert ist, streng monoton fallend.

(d) Definitionsbereich ist

$$D_4 = \left[-2, -\sqrt{3} \right] \cup \left[\sqrt{3}, 2 \right],$$

 f_4 ist auf $[-2, -\sqrt{3}]$ streng monoton fallend und auf $[\sqrt{3}, 2]$ streng monoton steigend.

(e) Definitionsbereich ist

$$D_5 = \mathbb{R} \setminus \{0\},\$$

 f_5 ist sowohl auf der linken Hälfte $(-\infty, 0)$ von D_5 als auch auf der rechten Hälfte $(0, \infty)$ streng monoton fallend, sie ist aber nicht auf ganz D_5 monoton.

(f) Definitionsbereich ist

$$D_6 = \left(-\infty, -\frac{1}{2}\right) \cup (2, \infty).$$

 f_6 ist auf $\left(-\infty, -\frac{1}{2}\right)$ streng monoton fallend und auf $(2, \infty)$ streng monoton steigend.

(g) Definitionsbereich ist

$$D_7 = (0,1) \cup (1,\infty).$$

Auf (0,1) und auf $(1,\infty)$ ist f_7 streng monoton steigend, aber nicht auf ganz D_7 .

(h) Definitionsbereich ist

$$D_8 = \mathbb{R}$$
.

 f_8 ist auf ganz \mathbb{R} streng monoton steigend.