Tutorium Mathematik II, M 28. April 2017

*Aufgabe 1. Gegeben sind die Basen des \mathbb{R}^3

$$B = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 2 \end{pmatrix} \end{pmatrix} \quad \text{und} \quad C = \begin{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -3 \end{pmatrix} \end{pmatrix}.$$

Der Punkt \vec{x} habe die Koordinaten

(10 Punkte)

$$\vec{x}_B = \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix}$$

bezüglich der Basis B. Welche Koordinaten hat er bezüglich der Basis C?

Die mit * markierten Aufgaben werden vom Vortragenden präsentiert, die restlichen Aufgaben sind von den Studierenden zu bearbeiten.

Aufgabe 2. Ermitteln Sie die komplette Beschreibung (Typ, Verschiebungsvektor, Drehwinkel, ggf. Achsenlängen, Asymptoten etc.) des Kegelschnitts, welcher durch die Gleichung (10 Punkte)

$$-2x_1^2 + 8x_1x_2 + 4x_2^2 + 4x_1 + 4x_2 + 1 = 0$$

definiert wird.

Aufgabe 3. Bestimmen Sie die allgemeine Lösung der Differentialgleichung

(10 Punkte)

$$y''' + 3y'' - 10y' = 12e^{-2x} + 100.$$

Aufgabe 4. Bestimmen Sie diejenige Lösung des inhomogenen Systems

$$\dot{\vec{x}}(t) = \begin{pmatrix} 2 & -3 \\ -3 & 10 \end{pmatrix} \vec{x}(t) + \begin{pmatrix} \sin(t)e^{11t} + 3e^{3t} \\ -3\sin(t)e^{11t} + e^{3t} \end{pmatrix},$$
 welche die Bedingung (10 Punkte)

$$\vec{x}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

erfüllt.

Lösung von Aufgabe 2

Die Lösungsmenge besteht aus zwei Geraden durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ mit Steigung $\pm \sqrt{\frac{3}{2}}$ um den Winkel $\arccos(\frac{2}{\sqrt{5}}) \simeq 26,565^{\circ}$ gedreht und um $\vec{q} = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$ verschoben.

Eine äquivalente Formulierung bekommt man wenn man die Reihenfolge der zwei Eigenwerte vertauscht: die Lösungsmenge besteht aus zwei Geraden durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ mit Steigung $\pm \sqrt{\frac{2}{3}}$ um den Winkel $\arccos(\frac{1}{\sqrt{5}}) \simeq 63,435^{\circ}$ gedreht und um $\vec{q} = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$ verschoben.

Lösung von Aufgabe 3

Die Allgemeine Lösung ist

$$y = a + be^{2x} + ce^{-5x} + \frac{1}{2}e^{-2x}.$$

Lösung von Aufgabe 4

Die allgemeine Lösung ist

$$\vec{x}(t) = ae^t \begin{pmatrix} 3 \\ 1 \end{pmatrix} + be^{11t} \begin{pmatrix} -1 \\ 3 \end{pmatrix} + \begin{pmatrix} e^{2t} \\ -\sin(t) \end{pmatrix}.$$