Probabilistic method in combinatorics and algorithmics WS 2016/17

Exercise sheet 3

Exercises for the exercise session on 7/11/2016

Problem 3.1. Let m, n be positive integers and consider the following random experiment. Given m balls and n bins, place each ball in a bin chosen uniformly at random, independently for each ball. For $\varepsilon > 0$, prove that

 $\mathbb{P}(\exists \text{ an empty bin}) \xrightarrow{n \to \infty} \begin{cases} 1 & \text{if } m \le (1 - \varepsilon)n \ln n, \\ 0 & \text{if } m \ge (1 + \varepsilon)n \ln n. \end{cases}$

Problem 3.2. Let $n \ge r \ge 2$ and $p \in [0, 1]$. Consider the random *r*-uniform hypergraph $H_r(n, p)$ on *n* vertices, in which each *r*-tuple forms an edge with probability *p* independently. Let *A* be the event that each (r - 1)-tuple is contained in at least one edge. For $\varepsilon > 0$, prove that

$$\mathbb{P}(A) \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } p \le (1-\varepsilon)\frac{(r-1)\ln n}{n}, \\ 1 & \text{if } p \ge (1+\varepsilon)\frac{(r-1)\ln n}{n}. \end{cases}$$

Problem 3.3. Let A_1, \ldots, A_n be events in a probability space and let D = ([n], E) be a dependency graph for the events A_1, \ldots, A_n . Use the Lovász Local Lemma to prove that the intersection of the events $\overline{A_1}, \ldots, \overline{A_n}$ has a positive probability if one of the following holds.

(a) For every $i = 1, \ldots, n$,

$$\mathbb{P}[A_i] < 1$$
 and $\sum_{(i,j)\in E} \mathbb{P}[A_j] \le \frac{1}{4}.$

Hint. Try $x_i = c\mathbb{P}[A_i]$ for a constant c.

(b) (Symmetric LLL) There exist $d \ge 1$ and $p \in [0, 1]$ such that

- no vertex in D has more than d outgoing edges,
- $\mathbb{P}[A_i] \leq p$ for all $i = 1, \ldots, n$, and
- $ep(d+1) \leq 1$.

Problem 3.4. Let r, D be positive integers and V_1, \ldots, V_r be disjoint sets of size $\lceil 2eD \rceil$. Suppose that G is a graph with vertex set $V = V_1 \cup \cdots \cup V_r$ such that every vertex of G has degree at most D. Use the Lovász Local Lemma to prove that there exists an *independent transversal*, that is, an independent set that contains precisely one vertex from each V_i .

Problem 3.5. Let β be a positive integer and let G be a graph with maximum degree $\Delta \geq \beta^{\beta}$. Prove that the vertices of G can be coloured with $Q = \left[16\Delta^{1+\frac{1}{\beta}}\right]$ colours so that

- no two adjacent vertices have the same colour and
- for every vertex v, each colour appears at most β times in the neighbourhood of v.

Hint. Colour the vertices randomly. For every edge e = uv, the event A_e that u and v have the same colour is 'bad'. Similarly, for every set S of $\beta + 1$ vertices in the neighbourhood of a vertex v, the event A_S is 'bad'. Given a 'bad' event, with how many events of type A_e and A_S can there be dependencies, respectively? Try to apply the result from Problem 3.3a.