## Advanced and algorithmic graph theory



Summer term 2018

## Exercise sheet 1

Exercises for the exercise session on 15/03/2018

**Problem 1.1.** Let T be a spanning tree of a connected graph G.

A fundamental circuit of G (with respect to T) is the edge set of a cycle in G that contains precisely one edge that is not in T.

For each edge  $e \in E(T)$ , the graph T - e has precisely two components, with vertex sets  $A_e$  and  $B_e$ , say. The set of all edges of G between  $A_e$  and  $B_e$  is called a *fundamental cut* of G (with respect to T).

Prove that the following statements are equivalent for a set  $F \subseteq E(G)$ .

- (i) F is the symmetric difference of fundamental circuits (w.r.t. T);
- (ii) Every vertex in the graph (V(G), F) has even degree;
- (iii) F meets each fundamental cut (w.r.t. T) in an even number of edges.

**Problem 1.2.** Let G be a connected graph. Prove that the following statements are equivalent for an edge  $e \in E(G)$ .

- (i) G e is not connected;
- (ii) No cycle in G contains e;
- (iii) Every spanning tree of G contains e;
- (iv) Every spanning tree of G found by an application of BFS(G,u) contains e (independently of the choice of u and of the order in which we check the neighbours of a vertex in the FOR-loop);
- (v) Every spanning tree of G found by an application of DFS(G,u) contains e (independently of the choice of u and of the order in which we check the neighbours of a vertex in the FOR-loop).

**Problem 1.3.** Let G be a connected weighted graph. For i = 1, 2, denote by  $T_i$  the graph that is generated by Algorithm *i* from the lecture. Reminder:

Alg. 1: Recursively add edges of smallest weight that do not create cycles.

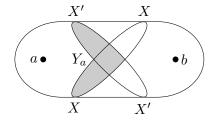
Alg. 2: Recursively delete edges of largest weight that do not separate.

Prove that both  $T_1$  and  $T_2$  are spanning trees of G and that both have smallest total weight among all spanning trees of G.

**Problem 1.4.** Let G be a graph and let a, b be two distinct vertices of G. Suppose that each of the vertex sets  $X, X' \subseteq V(G) \setminus \{a, b\}$  is an *a-b* separator. Denote by  $C_a$  and  $C_b$  the component of G - X that contains a and b, respectively. Define  $C'_a$  and  $C'_b$  analogously for X'. Prove that the sets

$$Y_a := (X \cap C'_a) \cup (X \cap X') \cup (X' \cap C_a),$$
  
$$Y_b := (X \cap C'_b) \cup (X \cap X') \cup (X' \cap C_b)$$

are a-b separators as well.



**Problem 1.5.** Let  $G, a, b, X, X', Y_a, Y_b$  be as in Problem 1.4.

- (a) Prove that X is a minimal a-b separator (with respect to containment, i.e. if we remove a vertex from X, then the remaining set is no longer an a-b separator) if and only if each vertex in X has neighbours in both  $C_a$  and  $C_b$ .
- (b) Suppose that both X and X' have smallest size among all a-b separators in  $V \setminus \{a, b\}$ . Prove that  $Y_a$  and  $Y_b$  have the same size as X and X'.
- (c) Give an example for which X and X' are minimal a-b separators (w.r.t. containment), but  $Y_a$  and  $Y_b$  are not minimal.

**Problem 1.6.** Let G be k-connected, where  $k \ge 2$ . Prove that for each set of k vertices in G, there is a cycle in G that contains them all.