
Advanced and algorithmic

graph theory

Summer term 2018

Exercise sheet 2
Exercises for the exercise session on 12/04/2018

Problem 2.1. Let G be a 2-connected graph and let e ∈ E(G).

(a) Prove that all ear-decompositions of G have the same number k of ears.

(b) Show that there are ear-decompositions C,P1, . . . , Pk and C̃, P̃1, . . . , P̃k of G
such that e lies on C and on P̃1.

(c) Prove that e lies on at least k + 1 distinct cycles in G.

Problem 2.2. Prove that the following statements are equivalent for every non-
empty graph G.

(i) No two cycles of G intersect in more than one vertex;

(ii) no edge of G lies on more than one cycle;

(iii) each block of G is either an isolated vertex, a bridge, or a cycle.

Note. A connected graph satisfying these properties is called cactus.

Problem 2.3. Prove that every graph G with at least two vertices satisfies

κ(G) ≤ λ(G) ≤ δ(G).

For every integer k ≥ 1, construct graphs G1, G2 with

κ(G1) = 1, λ(G1) = δ(G1) = k,

κ(G2) = λ(G2) = 1, δ(G2) = k.

Bonus problem. If d, k, l are integers with 1 ≤ k ≤ l ≤ d, is there always a graph
G with κ(G) = k, λ(G) = l, and δ(G) = d?

Problem 2.4. For a graph G, its line graph L(G) is defined as the graph on vertex
set E(G), in which distinct e, e′ ∈ E(G) are adjacent (as vertices of L(G)) if and
only if they intersect (as edges of G).
Use L(G) to prove the edge version of Menger’s theorem: For disjoint sets A,B of
vertices in a graph G, the largest number of edge-disjoint A–B paths equals the
smallest size of an edge set separating A and B.

Problem 2.5. Let G be a bipartite graph with sides A and B.

(a) Let MA,MB be matchings in G. Denote by A′ the set of vertices in A that
MA covers; define B′ analogously for MB and B. Prove that G has a matching
that covers A′ ∪B′.

(b) Use (a) to show that G has a matching that covers all vertices of maximum
degree ∆(G). Deduce that every r-regular bipartite graph (with r ≥ 1) has a
perfect matching.

2

Problem 2.6. For a bipartite graph G, consider the algorithm from the lecture
that constructs a largest matching in G by recursively finding augmenting paths via
BFSm.

(a) Prove that if M is not largest possible, then BFSm finds an unmatched vertex
in B.

(b) Suppose (for simplicity) that |A| = |B| and determine (the order of) the
running time depending on n := |G| and m := ‖G‖. What is the running time
if we know that a largest matching consists of µ edges? Simplify the formulas
under the additional assumption that m = Ω(n).

