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Problem 4.1. A graph is called outerplanar if it is planar and has a drawing in
which all vertices lie on the boundary of the outer face. Prove that the following
statements are equivalent for a graph G.

(i) G is outerplanar;

(ii) G contains neither K4 nor K2,3 as a minor;

(iii) G contains neither K4 nor K2,3 as a topological minor.

Problem 4.2. Prove that for every closed surface, the set of forbidden topological
minors is finite.
Hint. Start with the set of forbidden minors. For each forbidden minor H, find a
finite number of graphs so that every graph with an MH contains a subdivision of
(at least) one of them. Taking a look at how we found a TK5 or a TK3,3 in an MK5

or MK3,3 in the lecture might help.

Bonus problem. Find an infinite set {G1, G2, . . . } of finite graphs in which no Gi

is a topological minor of Gj for i 6= j.
Hint. Try to construct Gi+1 from Gi so that the vertices of “large” degrees in Gi+1

are arranged in a way that makes it impossible to find a TGi in Gi+1.

Problem 4.3. Describe a planarity recognition algorithm along the following lines.

• Reduce the problem to 2-connected graphs G with a linear number of edges.
(How?)

• Find a cycle C in G for which every attachment set of a fragment is indepen-
dent in C. (How?)

• Recursively check planarity of F ∪ C for each fragment F .

• Check whether OG(C) is bipartite. (How?)

What running time can you achieve? Assuming that we are given a cycle C with
V (C) = V (G), how much does the running time improve?
Note. Do not spend too much time trying to optimise the running time. Rough esti-
mates are enough.
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Problem 4.4. Find all mistakes in the following “proof” of the Four Colour Theo-
rem. (In other words, point out which arguments are valid and which are false.)

Suppose, for contradiction, that the Four colour theorem is false. Let v be a vertex of
degree d := δ(G) ≤ 5 in a smallest non-4-colourable planar graph G. Fix a drawing
of G and a 4-colouring c of G − v. Denote the neighbours of v by x1, . . . , xd in the
order they lie around v in the drawing. Furthermore, set Gi,j := G[c−1(i) ∪ c−1(j)].
Since G is not 4-colourable, we know that

no 4-colouring of G− v uses less than four colours for N(v). (1)

In particular, d ≥ 4. W.l.o.g. c(xi) = i for i = 1, 2, 3, 4 and, if d = 5, c(x5) ∈ {1, 2}.
Suppose first that d = 4. If there is no x1–x3 path in G1,3, then we can recolour x1
with colour 3 by exchanging the colours in the component of G1,3 that contains x1
and obtain a colouring c′ that contradicts (1). Otherwise, we can recolour x2 with
colour 4 analogously.

Now suppose that d = 5 and c(x5) = 1. If there is no x3–{x1, x5} path in G1,3, we
can recolour x3 with colour 1. Otherwise, we can recolour x2 with colour 4, again
yielding a contradiction.

Finally, suppose that d = 5 and c(x5) = 2. If there is no x1–x3 path in G1,3 or
no x1–x4 path in G1,4, then we can recolour x1 with colour 3 or 4, respectively.
Otherwise, there is neither an x2–x4 path in G2,4 nor an x5–x3 path in G2,3. Thus
we can recolour x2 with colour 4 and x5 with colour 3, again a contradiction to (1).

Problem 4.5. Let G be a graph.

(a) Show that there exists an ordering σ0 of V (G) such that χGr(G, σ0) = χ(G).

(b) Prove that χGr(G, σ) ≤ 1
2

+
√

2 ‖G‖+ 1
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for every ordering σ of V (G).

(c) Construct, for every positive integer n, a graph Gn on 2n vertices and an
ordering σ1 of V (Gn), for which χ(Gn) = 2, but χGr(Gn, σ1) = n.

Problem 4.6. Prove that the upper bound 1 + maxH⊆G δ(H) for χ(G) is strictly
larger than 1 + 1

2
d(G).


