## Advanced and algorithmic graph theory



Summer term 2018

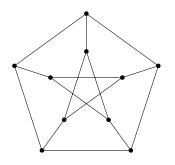
## Exercise sheet 5

Exercises for the exercise session on 07/06/2018

**Problem 5.1.** Along the lines of Brooks' theorem, derive an algorithm that finds, for every connected graph G that is neither complete nor an odd cycle, a  $\Delta(G)$ -colouring in time O(m+n).

**Problem 5.2.** Prove that the recursive-largest-first algorithm colours all bipartite graphs optimally and show that it can be implemented to run in time O(nm).

**Problem 5.3.** Let  $n \ge 2$  be an integer. Prove that  $\chi'(K^n) = n$  if n is odd and  $\chi'(K^n) = n - 1$  if n is even. Furthermore, determine the chromatic index of the Petersen graph depicted below.



**Problem 5.4.** Prove directly (that is, without using any results about edgecolourings from the lecture) that every k-regular bipartite graph is k-edge-colourable. Prove that this implies Theorem 4.22, i.e.  $\chi'(G) = \Delta(G)$  for every bipartite graph.

**Problem 5.5.** For every  $k \in \mathbb{N}$ , construct a bipartite graph  $G_k$  and an assignment of lists that shows that  $G_k$  is *not* k-choosable.

**Bonus problem.** For a positive integer r, we denote by  $K_2^r$  the graph with vertex set the disjoint union of sets  $V_1, \ldots, V_r$  of size 2 and, for all  $1 \le i < j \le r$ , all edges between  $V_i$  and  $V_j$ . Prove that  $ch(K_2^r) = r$ .

*Hint.* Try to use induction on r. If the induction step fails, what does this tell us about the lists?

**Problem 5.6.** A total colouring of G is a function  $c: V(G) \cup E(G) \to S$  such that  $c|_{V(G)}$  and  $c|_{E(G)}$  are vertex- and edge-colourings, respectively, and in addition no edge has the same colour as one of its end vertices. We write  $\chi_t(G)$  for the least k for which there exists a total colouring of G with k colours.

Prove that the list colouring conjecture would imply  $\Delta(G) + 1 \leq \chi_t(G) \leq \Delta(G) + 3$ . (The *total colouring conjecture* asserts that even  $\chi_t(G) \leq \Delta(G) + 2$ .)