Analytic combinatorics

Exercise sheet 3

Exercises for the exercise session on 16 April 2018
Problem 3.1. Consider a sequence $\left\{D_{n}\right\}_{n \geq 1}$ satisfying the recurrence

$$
\left\{\begin{array}{l}
D_{n}=D_{\left\lfloor\frac{n}{2}\right\rfloor}+1, \quad n \geq 2, \\
D_{1}=2 .
\end{array}\right.
$$

Determine closed formulae for
(1) D_{n}
(2) $\sum_{k=1}^{n} D_{k}$.

Problem 3.2. Find initial conditions a_{0}, a_{1} and a_{2} for which the growth rate of the solution to the recurrence

$$
a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}, \quad n \geq 3
$$

is
(1) constant
(2) exponential and
(3) fluctuating in sign.

Problem 3.3. (1) Prove the identity $\sum_{0 \leq k \leq n}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=4^{n}$.
(2) What identity on binomial coefficient is implied by the convolution

$$
(1+z)^{r}(1-z)^{s}=\left(1-z^{2}\right)^{s}(1+z)^{r-s}
$$

for $r>s$?
(3) Prove the identity $\sum_{0 \leq k \leq t}\binom{t-k}{r}\binom{k}{s}=\binom{t+1}{r+s+1}$.

Problem 3.4. Let $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ be the harmonic number.
(1) Find the explicit OGF of the sequence $\left(H_{n}\right)_{n \geq 1}$ of harmonic numbers

$$
\sum_{n \geq 1} H_{n} z^{n}=?
$$

(2) Prove the identity

$$
\left[z^{n}\right]\left(\frac{z}{(1-z)^{2}} \ln \frac{1}{1-z}\right)=n\left(H_{n}-1\right) .
$$

Problem 3.5. (1) Using EGF, find a solution to the recurrence

$$
\left\{\begin{array}{l}
a_{n}=\sum_{0 \leq k \leq n}\binom{n}{k} \frac{a_{k}}{2^{k}}, \quad n \geq 1, \\
a_{0}=1 .
\end{array}\right.
$$

(2) Consider an EGF $e^{z+\frac{z^{2}}{2}}$ of a sequence $\left\{a_{n}\right\}_{n \geq 0}$. Show that a_{n} satisfies the recurrence

$$
a_{n}=a_{n-1}+(n-1) a_{n-2}, \quad n \geq 2 .
$$

