

## Exercise sheet 4

Exercises for the exercise session on 2 May 2018

**Problem 4.1.** An *alignment* is a sequence of cycles. Let  $A(z) = \sum_{n} A_n \frac{z^n}{n!}$  denote the exponential generating function for the class of alignments. Let  $X_n$  denote the number of cycles in a random alignment, which is chosen uniformly at random among all alignments of size n. Derive

- (1) a closed expression for A(z);
- (2) an asymptotic expression for  $A_n$ ;
- (3)  $\mathbb{E}(X_n)$ .

**Problem 4.2.** Let  $Y_n$  denote the number of components in a random 2-regular graph, which is chosen uniformly at random among all 2-regular (labelled simple) graph with vertex set [n]. Derive

- (1)  $\mathbb{E}(Y_n)$
- (2)  $\mathbb{V}(Y_n)$

**Problem 4.3.** Let  $B(z) = \sum_n B_n z^n$  denote the ordinary generating function for the class of binary strings with no consecutive 0's (note: the empty string is included in this class). Derive

- (1) a closed expression for B(z);
- (2) an asymptotic expression for  $B_n$ .

**Problem 4.4.** Let  $Q(z) = \sum_{n} Q_n \frac{z^n}{n!}$  denote the exponential generating function for the class of permutations with cylces of length 2 (mod 3). Derive

- (1) a closed expression for Q(z);
- (2) an asymptotic expression for  $Q_n$ .