Exercise sheet 4

Exercises for the exercise session on 2 May 2018
Problem 4.1. An alignment is a sequence of cycles. Let $A(z)=\sum_{n} A_{n} \frac{z^{n}}{n!}$ denote the exponential generating function for the class of alignments. Let X_{n} denote the number of cycles in a random alignment, which is chosen uniformly at random among all alignments of size n. Derive
(1) a closed expression for $A(z)$;
(2) an asymptotic expression for A_{n};
(3) $\mathbb{E}\left(X_{n}\right)$.

Problem 4.2. Let Y_{n} denote the number of components in a random 2-regular graph, which is chosen uniformly at random among all 2-regular (labelled simple) graph with vertex set $[n]$. Derive
(1) $\mathbb{E}\left(Y_{n}\right)$
(2) $\mathbb{V}\left(Y_{n}\right)$

Problem 4.3. Let $B(z)=\sum_{n} B_{n} z^{n}$ denote the ordinary generating function for the class of binary strings with no consecutive 0 's (note: the empty string is included in this class). Derive
(1) a closed expression for $B(z)$;
(2) an asymptotic expression for B_{n}.

Problem 4.4. Let $Q(z)=\sum_{n} Q_{n} \frac{z^{n}}{n!}$ denote the exponential generating function for the class of permutations with cylces of length $2(\bmod 3)$. Derive
(1) a closed expression for $Q(z)$;
(2) an asymptotic expression for Q_{n}.

