Exercise sheet 5

Exercises for the exercise session on 28 May 2018
Problem 5.1. Let $C(T)$ denote the center of a tree $T=(V, E)$.
(1) Prove that $|C(T)| \leq 2$.
(2) Prove that if $C(T)=\{v, w\}$, then $\{v, w\} \in E$.

Problem 5.2. Let $G(z)$ denote the ordinary generating function for the class of unlabelled ternary trees. Using a general result on the tree enumeration with generating function $T(z)=z \phi(T(z))$,
(1) determine the dominant singularity ρ of $G(z)$;
(2) derive a singular expansion of $G(z)$ near ρ;
(3) find an asymptotic expression for $\left[z^{n}\right] G(z)$.

Problem 5.3. Let $M(z)$ denote the ordinary generating function for the class of unlabelled plane rooted trees in which each vertex has at most two descendants. Using a general result on the tree enumeration with generating function $T(z)=z \phi(T(z))$,
(1) determine the dominant singularity ρ of $M(z)$;
(2) derive a singular expansion of $M(z)$ near ρ;
(3) find an asymptotic expression for $\left[z^{n}\right] M(z)$.

Problem 5.4. Let $C(z)$ denote the exponential generating function for the class of labelled rooted trees (i.e. Cayley trees).
(1) Find an asymptotic expression for $\left[z^{n}\right] C(z)$, using a general result on the tree enumeration with generating function $T(z)=z \phi(T(z))$.
(2) Use Lagrange's Inversion Theorem to determine an asymptotic expression for $n!\left[z^{n}\right] C(z)$, and use this to prove Stirling's formula $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$.

Problem 5.5. Let $T^{\circ}(z)$ denote the ordinary generating function for unlabelled rooted trees and let η be its radius of convergence. Let $C(z)$ be as in Problem 5.4 and define $R(z)=z \exp \left(\sum_{k \geq 2} \frac{1}{k} T^{\circ}\left(z^{k}\right)\right)$.
(1) Show that $T^{\circ}(z)=C(R(z))$ and η is equal to the smallest positive real solution of the equation $R(\eta)=1 / e$.
(2) Derive the following singular expansion of $T^{\circ}(z)$ near η :

$$
T^{\circ}(z)=1+C_{1}(1-z / \eta)^{1 / 2}+C_{2}(1-z / \eta)+O\left((1-z / \eta)^{3 / 2}\right) .
$$

(3) Determine the constants C_{1}, C_{2} explicitly in terms of η and $R^{\prime}(\eta)$.

