

Exercise sheet 5

Exercises for the exercise session on 28 May 2018

Problem 5.1. Let C(T) denote the center of a tree T = (V, E).

- (1) Prove that $|C(T)| \leq 2$.
- (2) Prove that if $C(T) = \{v, w\}$, then $\{v, w\} \in E$.

Problem 5.2. Let G(z) denote the ordinary generating function for the class of unlabelled ternary trees. Using a general result on the tree enumeration with generating function $T(z) = z\phi(T(z))$,

- (1) determine the dominant singularity ρ of G(z);
- (2) derive a singular expansion of G(z) near ρ ;
- (3) find an asymptotic expression for $[z^n]G(z)$.

Problem 5.3. Let M(z) denote the ordinary generating function for the class of unlabelled plane rooted trees in which each vertex has at most two descendants. Using a general result on the tree enumeration with generating function $T(z) = z\phi(T(z))$,

- (1) determine the dominant singularity ρ of M(z);
- (2) derive a singular expansion of M(z) near ρ ;
- (3) find an asymptotic expression for $[z^n]M(z)$.

Problem 5.4. Let C(z) denote the exponential generating function for the class of labelled rooted trees (i.e. Cayley trees).

- (1) Find an asymptotic expression for $[z^n]C(z)$, using a general result on the tree enumeration with generating function $T(z) = z\phi(T(z))$.
- (2) Use Lagrange's Inversion Theorem to determine an asymptotic expression for $n![z^n]C(z)$, and use this to prove Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Problem 5.5. Let $T^{\circ}(z)$ denote the ordinary generating function for unlabelled rooted trees and let η be its radius of convergence. Let C(z) be as in Problem 5.4 and define $R(z) = z \exp\left(\sum_{k\geq 2} \frac{1}{k}T^{\circ}(z^k)\right).$

- (1) Show that $T^{\circ}(z) = C(R(z))$ and η is equal to the smallest positive real solution of the equation $R(\eta) = 1/e$.
- (2) Derive the following singular expansion of $T^{\circ}(z)$ near η :

$$T^{\circ}(z) = 1 + C_1 \left(1 - z/\eta\right)^{1/2} + C_2 \left(1 - z/\eta\right) + O\left(\left(1 - z/\eta\right)^{3/2}\right).$$

(3) Determine the constants C_1, C_2 explicitly in terms of η and $R'(\eta)$.