Exercise sheet 6

Exercises for the exercise session on 6 June 2018

Problem 6.1. Let $T^{\circ}(z, w)$ denote the bivariate generating function for unlabelled rooted trees, where w marks the number of pendant copies of (a fixed unlabelled rooted tree) H. For each $w \in(1-\delta, 1]$ (for a given $0<\delta<1$) we let $\eta(w)$ denote the dominant singularity of $T^{\circ}(z, w)$. Prove that $\eta(w) \geq \eta(1)$.

Problem 6.2. Let \mathcal{C}_{n} denote the class of labelled rooted trees (i.e. Cayley trees) on n vertices and let R_{n} be chosen uniformly at random from \mathcal{C}_{n}. Let H be a fixed rooted tree and let X_{n} denote the number of pendant copies of H in R_{n}. Prove that there exists a constant $\delta>0$ such that

$$
\mathbb{P}\left[X_{n} \leq \delta n\right] \leq e^{-\Omega(n)} .
$$

Problem 6.3. Let S_{n} denote the number of ways to partition a labelled set of size n (so, for example, $S_{3}=5$ by considering the partitions $\{1\}\{2\}\{3\}$, $\{1\}\{2,3\},\{2\}\{1,3\}$, $\{3\}\{1,2\}$, and $\{1,2,3\}$), and let $S(z)=\sum_{n \geq 0} \frac{S_{n}}{n!} z^{n}$ denote the corresponding exponential generating function.
Show

$$
\left[z^{n}\right] S(z) \leq \frac{e^{n-1}}{(\ln n)^{n}}
$$

Problem 6.4. (1) Let R_{n} be as in Problem 6.2 and let X_{n} denote the root degree of R_{n}. Determine $\lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n}=k\right]$ for each $k \geq 1$.
(2) Let P_{n} be a uniform random unlabelled plane rooted tree and let Y_{n} denote the root degree of P_{n}. Determine $\lim _{n \rightarrow \infty} \mathbb{P}\left[Y_{n}=k\right]$ for each $k \geq 1$.

Problem 6.5. Show that the distribution of the number of cycles of length $\ell \in \mathbb{N}$ in a random permutation of size n converges to a Poisson distribution of rate $1 / \ell$.

