Probabilistic method in combinatorics and algorithmics WS 2017/18

Exercise sheet 3

Exercises for the exercise session on 15/11/2017

Problem 3.1. Let *H* be a fixed graph with *k* vertices and $m \ge 1$ edges. We define the maximum density m_H of *H* by

$$m_H := \max \left\{ \frac{|E(H')|}{|V(H')|} \mid H' \text{ is a non-empty subgraph of } H \right\}.$$

Prove that

$$\mathbb{P}[H \text{ is a subgraph of } G(n,p)] \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } p = o\left(n^{-\frac{1}{m_H}}\right), \\ 1 & \text{if } p = \omega\left(n^{-\frac{1}{m_H}}\right). \end{cases}$$

Note. For a given set $S \in {\binom{[n]}{k}}$, there might be more than one bijection $V(H) \to S$ that preserves adjacencies. At some point in your proof, you should show that the number of such bijections does not influence your arguments.

Problem 3.2. Let $r \ge 2$ be given. For any $n \in \mathbb{N}$, $p \in [0, 1]$, we denote by $H_r(n, p)$ the random *r*-uniform hypergraph on *n* vertices, in which each element of $\binom{[n]}{r}$ forms an edge with probability *p* independently. Let *A* be the event that each (r-1)-tuple is contained in at least one edge. For fixed $\varepsilon > 0$, prove that

$$\mathbb{P}[A] \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } p = (1 - \varepsilon) \frac{(r-1)\ln n}{n}, \\ 1 & \text{if } p = (1 + \varepsilon) \frac{(r-1)\ln n}{n}. \end{cases}$$

Suppose we replace ε by a function $\varepsilon(n) = o(1)$. How fast can $\varepsilon(n)$ tend to 0 if we still want to be able to prove the same result?

Problem 3.3. Let A_1, A_2, A_3 be events in a probability space such that the following holds.

- A_1 and A_2 are independent;
- A_2 and A_3 are independent;
- $A_1 \cap A_2$ and A_3 are independent.

Prove that A_1 and $A_2 \cap A_3$ are independent as well. Deduce from this that one may assume in the Lovász Local Lemma that the dependency graph D has the following properties.

- (i) Every vertex i of D is either isolated (i.e. there are no edges involving i) or has at least one outgoing edge (i.e. an edge (i, j)).
- (ii) Either D is edgeless or contains a directed cycle (this cycle might consist of only two edges (i, j) and (j, i)).

Problem 3.4. Let $n \ge 2$ be fixed. For the following probability spaces and sets of 'bad' events A_1, \ldots, A_n , prove that the Lovász Local Lemma *cannot* be applied (regardless of the choice of the dependency graph D).

- (a) Let Ω be the set of all sequences s_1, \ldots, s_n with $s_i \in \{1, \ldots, 6\}$ such that $s_1 + \cdots + s_n$ is even. Choose an element from Ω uniformly at random. (I.e. we are considering the outcome of throwing a fair die *n* times, conditioned on the event that the sum of values is even.) Denote by A_i the event that s_i is odd.
- (b) Let Ω be the set of all permutations of [n]. We choose a permutation σ uniformly at random and denote, for each $i \in [n]$, by A_i the event that $\sigma(i) = i$.

Problem 3.5. Let A_1, \ldots, A_n be events in a probability space and let D = ([n], E) be a directed graph. We say that D is a *negative dependency graph* for A_1, \ldots, A_n if the following holds.

For every
$$J \subseteq [n]$$
 and $i \in [n] \setminus J$, if $(i, j) \notin E$ for all $j \in J$ and $\mathbb{P}\left[\bigwedge_{j \in J} \overline{A_j}\right] > 0$, then $\mathbb{P}\left[A_i \mid \bigwedge_{j \in J} \overline{A_j}\right] \leq \mathbb{P}(A_i)$.

Replacing 'dependency graph' by 'negative dependency graph' in the statement of the Lovász Local Lemma results in the so-called *Lopsided Lovász Local Lemma*.

- (a) Sketch how the proof of the Lovász Local Lemma from the lecture generalises to a proof of the Lopsided Lovász Local Lemma.
- (b) Follow the arguments sketched below to prove in that Problem 3.4(b), the edgeless graph on [n] is a negative dependency graph.

It suffices to show (why?) that

$$\mathbb{P}\left[\bigwedge_{j\in J}\overline{A_j}\;\middle|\;A_i\right] \leq \mathbb{P}\left[\bigwedge_{j\in J}\overline{A_j}\right]$$

for all $J \subset [n]$ and $i \in [n] \setminus J$ such that $\mathbb{P}[A_i] > 0$. Show that this is equivalent to

$$n \left| A_i \wedge \bigwedge_{j \in J} \overline{A_j} \right| \le \left| \bigwedge_{j \in J} \overline{A_j} \right|.$$

To prove this inequality, for each permutation $\sigma \in A_i \wedge \bigwedge_{j \in J} \overline{A_j}$, define *n* permutations $\sigma_1, \ldots, \sigma_n \in \bigwedge_{j \in J} \overline{A_j}$ and prove that $\sigma_k \neq \tau_l$ as soon as $k \neq l$ or $\sigma \neq \tau$.