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Problem 3.1. Let H be a fixed graph with k vertices and m ≥ 1 edges. We define
the maximum density mH of H by

mH := max

{
|E(H ′)|
|V (H ′)|

∣∣∣∣ H ′ is a non-empty subgraph of H

}
.

Prove that

P[H is a subgraph of G(n, p)]
n→∞−→

0 if p = o
(
n
− 1

mH

)
,

1 if p = ω
(
n
− 1

mH

)
.

Note. For a given set S ∈
(
[n]
k

)
, there might be more than one bijection V (H)→ S

that preserves adjacencies. At some point in your proof, you should show that the
number of such bijections does not influence your arguments.

Problem 3.2. Let r ≥ 2 be given. For any n ∈ N, p ∈ [0, 1], we denote by Hr(n, p)
the random r-uniform hypergraph on n vertices, in which each element of

(
[n]
r

)
forms

an edge with probability p independently. Let A be the event that each (r−1)-tuple
is contained in at least one edge. For fixed ε > 0, prove that

P[A]
n→∞−→

{
0 if p = (1− ε) (r−1) lnn

n
,

1 if p = (1 + ε) (r−1) lnn
n

.

Suppose we replace ε by a function ε(n) = o(1). How fast can ε(n) tend to 0 if we
still want to be able to prove the same result?

Problem 3.3. Let A1, A2, A3 be events in a probability space such that the following
holds.

• A1 and A2 are independent;

• A2 and A3 are independent;

• A1 ∩ A2 and A3 are independent.

Prove that A1 and A2 ∩A3 are independent as well. Deduce from this that one may
assume in the Lovász Local Lemma that the dependency graph D has the following
properties.

(i) Every vertex i of D is either isolated (i.e. there are no edges involving i) or
has at least one outgoing edge (i.e. an edge (i, j)).

(ii) Either D is edgeless or contains a directed cycle (this cycle might consist of
only two edges (i, j) and (j, i)).
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Problem 3.4. Let n ≥ 2 be fixed. For the following probability spaces and sets
of ‘bad’ events A1, . . . , An, prove that the Lovász Local Lemma cannot be applied
(regardless of the choice of the dependency graph D).

(a) Let Ω be the set of all sequences s1, . . . , sn with si ∈ {1, . . . , 6} such that
s1 + · · ·+ sn is even. Choose an element from Ω uniformly at random. (I.e. we
are considering the outcome of throwing a fair die n times, conditioned on the
event that the sum of values is even.) Denote by Ai the event that si is odd.

(b) Let Ω be the set of all permutations of [n]. We choose a permutation σ uni-
formly at random and denote, for each i ∈ [n], by Ai the event that σ(i) = i.

Problem 3.5. Let A1, . . . , An be events in a probability space and let D = ([n], E)
be a directed graph. We say that D is a negative dependency graph for A1, . . . , An

if the following holds.

For every J ⊆ [n] and i ∈ [n] \ J , if (i, j) /∈ E for all j ∈ J and

P
[∧

j∈J Aj

]
> 0, then P

[
Ai

∣∣∣ ∧j∈J Aj

]
≤ P(Ai).

Replacing ‘dependency graph’ by ‘negative dependency graph’ in the statement of
the Lovász Local Lemma results in the so-called Lopsided Lovász Local Lemma.

(a) Sketch how the proof of the Lovász Local Lemma from the lecture generalises
to a proof of the Lopsided Lovász Local Lemma.

(b) Follow the arguments sketched below to prove in that Problem 3.4(b), the
edgeless graph on [n] is a negative dependency graph.

It suffices to show (why?) that

P

[∧
j∈J

Aj

∣∣∣∣ Ai

]
≤ P

[∧
j∈J

Aj

]

for all J ⊂ [n] and i ∈ [n] \J such that P[Ai] > 0. Show that this is equivalent
to

n

∣∣∣∣∣Ai ∧
∧
j∈J

Aj

∣∣∣∣∣ ≤
∣∣∣∣∣∧
j∈J

Aj

∣∣∣∣∣ .
To prove this inequality, for each permutation σ ∈ Ai ∧

∧
j∈J Aj, define n

permutations σ1, . . . , σn ∈
∧

j∈J Aj and prove that σk 6= τl as soon as k 6= l or
σ 6= τ .


