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Problem 4.1. Let A1, . . . , An be events in a probability space and let D = ([n], E)
be a dependency graph for the events A1, . . . , An. Use the General Lovász Local Lem-
ma to prove that the intersection of the events A1, . . . , An has a positive probability
if one of the following holds.

(a) For every i = 1, . . . , n,

P[Ai] < 1 and
∑

(i,j)∈E

P[Aj] ≤
1

4
.

Hint. Try xi = cP[Ai] for a global constant c. At some point in the proof, you
might want to use the (easy to show) inequality (1 − a)(1 − b) ≥ 1 − (a + b)
for 0 ≤ a, b < 1.

(b) (Symmetric LLL) There exist d ≥ 1 and p ∈ (0, 1) such that

• no vertex in D has more than d outgoing edges,

• P[Ai] ≤ p for all i = 1, . . . , n, and

• ep(d+ 1) ≤ 1.

Problem 4.2. Let k ≥ 2 be given.

(a) Suppose that H is a hypergraph in which each edge has at least k elements.
For each edge f and each j ≥ k, denote by df,j the number of edges of size j
that intersect f . Prove that H is 2-colourable if

8
∑
j≥k

df,j
2j
≤ 1

for each edge f of H.

(b) We say that a clause has length l if it consists of l distinct literals. By (≥ k)-
SAT, we denote the class of all CNF-formulas in which each clause has length
at least k. (The number of clauses and the lengths of all clauses are assumed
to be finite.) Let dk, dk+1, . . . ∈ R be such that dk + dk+1 + · · · ≤ 1.

Suppose that F is an instance of (≥ k)-SAT such that

• for every j ≥ k, each variable lies in at most
2j−2dj
j

clauses of length j
and

• for every l > j ≥ k, each clause of length l contains at most j variables
that appear in clauses of length j.

Prove that F is satisfiable.
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Problem 4.3. Let G be a graph and let d ≥ 1. Suppose that for every vertex v,
there exists a list S(v) of precisely d2ede ‘admissible’ colours such that no colour in
S(v) is admissible for more than d neighbours of v. Prove that there is a ‘proper’
colouring of G (i.e. no two adjacent vertices have the same colour) assigning to each
vertex an admissible colour.
Hint. The fewer vertices and colours play a role in the probability of a ‘bad’ event
A, the simpler the expression for P[A] will be.

Problem 4.4. Let D be a directed graph without loops (i.e. E(D) is a subset of
{(u, v) | u, v ∈ V (D)∧u 6= v}) in which each vertex has precisely δ+ many outgoing
edges and at most ∆− many ingoing edges. Suppose that k is a positive integer
satisfying

e(δ+∆− + 1)

(
1− 1

k

)δ+
< 1.

Prove that there exists a colouring c : V (D)→ {0, . . . , k − 1} such that each vertex
v ∈ V (D) has an outgoing edge (v, w) with c(w) ≡ c(v) + 1 mod k.
Derive from this that if each vertex of D has at least δ+ outgoing and at most ∆−

ingoing edges, then D contains a directed cycle whose length is a multiple of k.

Problem 4.5. Define the set S ⊂ N by letting each number n be in S with proba-
bility 1/2 independently.

(a) For k, l ∈ N, we set

wl(k) =

⌈
ln(kl2k−1)

ln 2

⌉
.

Denote by Al the event that there is a k ≥ 2 such that S contains an arithmetic
progression of the form

k − b, k, k + b, . . . , k + (wl(k)− 2)b.

Prove that P[Al] ≤ 1/l and deduce from this that with probability 1, S does
not contain an arithmetic progression of infinite length.

(b) Prove that

P
[

lim
n→∞

|S ∩ [n]|
n

=
1

2

]
= 1.

To that end, for fixed ε > 0 and n, use the Chernoff bounds to find an upper
bound for

P
[∣∣∣∣ |S ∩ [n]|

n
− 1

2

∣∣∣∣ ≥ ε

]
and apply a union bound to show that

P
[
∃n ≥ n0 with

∣∣∣∣ |S ∩ [n]|
n

− 1

2

∣∣∣∣ ≥ ε

]
= o(n0).

Where does this strategy fail when we use Chebyshev’s inequality instead of
Chernoff bounds?

Note. Recall that Szemerédi’s Theorem states that each S ⊂ N with

lim sup
n→∞

|S ∩ [n]|
n

> 0

contains infinitely many arithmetic progressions of length k for every k. Thus, the
random set S above shows that we cannot expect an arithmetic progression of infinite
length.


