## Probabilistic method in combinatorics and algorithmics WS 2017/18



## Exercise sheet 4

Exercises for the exercise session on 28/11/2017

**Problem 4.1.** Let  $A_1, \ldots, A_n$  be events in a probability space and let D = ([n], E) be a dependency graph for the events  $A_1, \ldots, A_n$ . Use the General Lovász Local Lemma to prove that the intersection of the events  $\overline{A_1}, \ldots, \overline{A_n}$  has a positive probability if one of the following holds.

(a) For every  $i = 1, \ldots, n$ ,

$$\mathbb{P}[A_i] < 1$$
 and  $\sum_{(i,j)\in E} \mathbb{P}[A_j] \le \frac{1}{4}.$ 

*Hint.* Try  $x_i = c\mathbb{P}[A_i]$  for a global constant c. At some point in the proof, you might want to use the (easy to show) inequality  $(1-a)(1-b) \ge 1 - (a+b)$  for  $0 \le a, b < 1$ .

- (b) (Symmetric LLL) There exist  $d \ge 1$  and  $p \in (0, 1)$  such that
  - no vertex in D has more than d outgoing edges,
  - $\mathbb{P}[A_i] \leq p$  for all  $i = 1, \ldots, n$ , and
  - $ep(d+1) \leq 1$ .

**Problem 4.2.** Let  $k \ge 2$  be given.

(a) Suppose that H is a hypergraph in which each edge has at least k elements. For each edge f and each  $j \ge k$ , denote by  $d_{f,j}$  the number of edges of size j that intersect f. Prove that H is 2-colourable if

$$8\sum_{j\geq k}\frac{d_{f,j}}{2^j}\leq 1$$

for each edge f of H.

(b) We say that a clause has *length* l if it consists of l distinct literals. By  $(\geq k)$ -SAT, we denote the class of all CNF-formulas in which each clause has length at least k. (The number of clauses and the lengths of all clauses are assumed to be finite.) Let  $d_k, d_{k+1}, \ldots \in \mathbb{R}$  be such that  $d_k + d_{k+1} + \cdots \leq 1$ .

Suppose that  $\mathcal{F}$  is an instance of  $(\geq k)$ -SAT such that

- for every  $j \ge k$ , each variable lies in at most  $\frac{2^{j-2}d_j}{j}$  clauses of length j and
- for every  $l > j \ge k$ , each clause of length l contains at most j variables that appear in clauses of length j.

Prove that  $\mathcal{F}$  is satisfiable.

**Problem 4.3.** Let G be a graph and let  $d \ge 1$ . Suppose that for every vertex v, there exists a list S(v) of precisely  $\lfloor 2ed \rfloor$  'admissible' colours such that no colour in S(v) is admissible for more than d neighbours of v. Prove that there is a 'proper' colouring of G (i.e. no two adjacent vertices have the same colour) assigning to each vertex an admissible colour.

*Hint.* The fewer vertices and colours play a role in the probability of a 'bad' event A, the simpler the expression for  $\mathbb{P}[A]$  will be.

**Problem 4.4.** Let D be a directed graph without loops (i.e. E(D) is a subset of  $\{(u, v) \mid u, v \in V(D) \land u \neq v\}$ ) in which each vertex has precisely  $\delta^+$  many outgoing edges and at most  $\Delta^-$  many ingoing edges. Suppose that k is a positive integer satisfying

$$e(\delta^+\Delta^- + 1)\left(1 - \frac{1}{k}\right)^{\delta^+} < 1.$$

Prove that there exists a colouring  $c: V(D) \to \{0, \ldots, k-1\}$  such that each vertex  $v \in V(D)$  has an outgoing edge (v, w) with  $c(w) \equiv c(v) + 1 \mod k$ .

Derive from this that if each vertex of D has at least  $\delta^+$  outgoing and at most  $\Delta^-$  ingoing edges, then D contains a directed cycle whose length is a multiple of k.

**Problem 4.5.** Define the set  $S \subset \mathbb{N}$  by letting each number *n* be in *S* with probability 1/2 independently.

(a) For  $k, l \in \mathbb{N}$ , we set

$$w_l(k) = \left\lceil \frac{\ln(kl2^{k-1})}{\ln 2} \right\rceil.$$

Denote by  $A_l$  the event that there is a  $k \ge 2$  such that S contains an arithmetic progression of the form

$$k - b, k, k + b, \dots, k + (w_l(k) - 2)b.$$

Prove that  $\mathbb{P}[A_l] \leq 1/l$  and deduce from this that with probability 1, S does not contain an arithmetic progression of infinite length.

(b) Prove that

$$\mathbb{P}\left[\lim_{n \to \infty} \frac{|S \cap [n]|}{n} = \frac{1}{2}\right] = 1.$$

To that end, for fixed  $\varepsilon > 0$  and n, use the Chernoff bounds to find an upper bound for

$$\mathbb{P}\left[\left|\frac{|S\cap[n]|}{n} - \frac{1}{2}\right| \ge \varepsilon\right]$$

and apply a union bound to show that

$$\mathbb{P}\left[\exists n \ge n_0 \text{ with } \left|\frac{|S \cap [n]|}{n} - \frac{1}{2}\right| \ge \varepsilon\right] = o(n_0)$$

Where does this strategy fail when we use Chebyshev's inequality instead of Chernoff bounds?

*Note.* Recall that Szemerédi's Theorem states that each  $S \subset \mathbb{N}$  with

$$\limsup_{n \to \infty} \frac{|S \cap [n]|}{n} > 0$$

contains infinitely many arithmetic progressions of length k for every k. Thus, the random set S above shows that we cannot expect an arithmetic progression of infinite length.