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Exercises for the exercise session on 6/12/2017

Problem 5.1. Let X ~ Bin(n, p) for some fixed p € (0, 1). Recall that in the proof
of Theorem 4.1 in the lecture, we used that the function ¢: (—1,00) — R defined
by ¢(y) := (1 4+ y)In(1 + y) — y satisfies

(a)

2
T >0 wy>-1.

‘P(?J)Zm_

Complete the proof of Theorem 4.1 by proving the ‘lower tail bound’

PIX < i~ 1] < exp (—;—M) 1)

for p = E[X] and all ¢ > 0.

To that end, prove first that this bound is trivial for ¢ > p and verify directly
that it is also true for t = p. (Note: The corresponding argument for t =n —pu
in the proof of the ‘upper tail bound” was missing in the lecture.) For ¢ < p,
show that

PIX < p—t] <exp (u(p—1))(pe™ +1—p)"
for every u > 0. Choose u such that

I—p
p(n—p+t)

(check that this value of u is indeed non-negative!) and deduce that

PIX <p—t] <exp {—w (—%) —(n—p)p (niu)l :

(The corresponding calculations in the lecture were rather long; you do not
have to repeat them in full length, just point out the differences.) Use this to
prove (1).

e =(u—1t)

Prove that

PIX > E[X] +¢] <exp (‘2 (Var[tX] + i))

for all ¢ > 0 (i.e. the ‘upper tail’ case of the Chernoff bound 2 in the special
case that the X; are i.i.d.).

Hint. As in the proof for the Chernoff bound 1, you might assume that ¢t <
n — E[X] (the case t = n — E[X] again being a non-trivial calculation, which
you are allowed to skip). Start from

PIX <p—1] <exp [—W? (%) — (e (_niu)l

to prove the desired bound (up to that point, the proofs are identical).




Problem 5.2. Prove the following variant of Chernoff bounds.

Suppose that X, ..., X, are independent random variables, where each X; has only
a finite number of possible values ; 1, ..., % m, € [—1,1] and satisfies E[X;] = 0. Let
X =X+ -+ X,. Then for 0 <t < 2Var[X],

tQ
PX >t < - :
X 2 1] < exp ( 4Var[X])
Hint. Start as in the proof of the Chernoff bound 1 from the lecture. Prove that
Elexp(uX;)] is bounded by 1 + u*Var[X;] if u < 1.

Problem 5.3. Let p = p(n) € (0,1) be given. For ¢t > 0 and a fixed vertex v of
G(n,p), compare the bounds on P[|d(v) — E[d(v)]| > t| provided by Chebyshev’s
inequality and by the Chernoff bounds 1 and 2. In each of the three cases, how large
does t have to be in order to deduce that

Plld(v) — E[d(v)]| = 1] = o(1)?
How large does t have to be if we want to prove that
P[Bu: [d(v) = E[d(v)]| = 1] = o(1)? (2)

Are there functions p(n) for which the minimum requirements for ¢ in (2) from the
two Chernoft bounds coincide?

Problem 5.4. Denote by T the number of triangles in G(n, ==). Prove that for

NG

every € > 0, we have
1—-¢ 1
T e n%, te
6 6

with probability 1 —o(1). If we let € = e(n) — 0, how fast can € tend to 0 if we still
want the same result?
Hint. Prove first that the number of triangles containing a fixed vertex is concentra-

ted around its expectation. To this end, you can use that for p(n) = ==, (2) holds

for some value t = ©(n'/4v/Inn).
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Problem 5.5. Suppose we place n balls in n bins, where each ball chooses its bin
uniformly at random and independently from the other balls. Prove that for each
e >0,

3
P |3 a bin with at least (5 + 5) Inn balls] = o(1).

By how much can we improve the lower bound on the number of balls in a bin if we
want to use Chernoff bounds?
If we have n? balls in total, for what & can we prove that

P [3 a bin with at least k balls] = o(1)?



