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Problem 6.1. Recall that in the proof of Azuma’s inequality (Theorem 5.4), we
defined the function

h(x) :=
eα + e−α

2
+
eα − e−α

2
x

for some value α > 0.

(a) Show that eα+e−α

2
< eα

2/2 and eαx ≤ h(x) for all x ∈ [−1, 1]. (These were the
missing links in the proof of Theorem 5.4.)

Also argue why Azuma’s inequality implies that

P
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Xm ≤ −s

√
m
]
< exp

(
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2

2

)
holds as well.

Hint. Comparing Taylor series might be the easiest way for the first part.

(b) Let X0, . . . , Xm be a martingale and suppose that there are positive constants
c1, . . . , cm such that

|Xi −Xi−1| ≤ ci

for i = 1, . . . ,m. Follow the lines of the proof of Theorem 5.4 to prove that for
every t > 0,

P [Xm ≥ X0 + t] < exp

(
− t2

2
∑m

i=1 c
2
i

)
.

Hint. Define Yi = 1
ci

(Xi − Xi−1) in order to have Yi ∈ [−1, 1]. Start with an
arbitrary (positive) α and determine its value at the end of the proof. Then
we need to bound

E
[
eαciYi | X0, . . . , Xi−1

]
.

To that end, the function h has to be defined slightly differently.

Problem 6.2. Suppose that an urn contains one red ball and one blue ball. A ball
is drawn from the urn uniformly at random. After that, the ball is put back into the
urn and another ball of the same colour is added to the urn. This process is repeated
n times. Denote by Xn the proportion of red balls in the urn after these n steps (i.e.
number of red balls divided by total number of balls). Use Azuma’s inequality to
prove that

P
[∣∣∣∣Xn −
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)
.
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Problem 6.3. Let S1, . . . , Sm be finite sets. Consider an arbitrary probability dis-
tribution P on the set

Ω := {(s1, . . . , sm) | ∀1 ≤ i ≤ m : si ∈ Si}.

Let f : Ω → R be a function. For every σ = (s1, . . . , sm) ∈ Ω, we choose τ =
(t1, . . . , tm) ∈ Ω according to P and set, for i = 0, . . . ,m,

Xi(σ) := E[f(τ) | ∀1 ≤ j ≤ i : sj = tj].

Then Xi is a random variable on Ω.

(a) Prove that X0, . . . , Xm is a martingale. Deduce from this that in particular,
the edge exposure martingale and the vertex exposure martingale are indeed
martingales.

(b) Prove that if |f(σ)− f(σ′)| ≤ 1 holds for all σ, σ′ that differ in only one
coordinate, then we have

|Xi −Xi−1| ≤ 1

for all i = 1, . . . ,m.

Problem 6.4. For an integer n ≥ 1, letG be the graph with vertex set V (G) = (Z7)
n

and with {u, v} ∈ E(G) if and only if u and v differ in only one coordinate. Suppose
that U ⊂ V (G) with |U | = 7n−1 is given. For every c > 0, we define Wc to be the
set of vertices of G with distance at least (2 + c)

√
n from U . Show that

|Wc| < 7ne−
c2

2 .

Hint. Define a martingale X0, . . . , Xn for which X0 is the average (taken over all
vertices of G) distance from U and Xn(v) is the distance of v from U . Apply Azuma’s
inequality twice: first to prove that X0 is ‘small’ and then to deduce the desired upper
bound for Wc.

Problem 6.5. Let k, n→∞ such that k = (2 + o(1)) log2 n. Set

µ :=

(
n

k

)
2−(k2).

Prove that (
n

k

) k−1∑
i=2

(
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i

)(
n− k
k − i

)
2−(k2)2−((k2)−(i2)) = (1 + o(1))

k4

n2
µ2

as n→∞. (This was used in the proof of Lemma 5.14.)
Hint. Remember that k is small compared to n, and we can choose n as large as
necessary. If n becomes large, is there one summand that is much larger than all the
others (even than all the others together)?


