Homepage
https://www.math.tugraz.at/comb/lehre
/1819/AAGT/AAGT.html

Grading - Lecture

- Oral exams, dates by appointment

Grading - Lecture

- Oral exams, dates by appointment
- 30-45 min

Grading - Lecture

- Oral exams, dates by appointment
- 30-45 min
- General ideas are more important than details

Grading - Exercises

- Beginning of session: announce which problems you solved

Grading - Exercises

- Beginning of session: announce which problems you solved
- Points per session: $6 \cdot \frac{\# \text { solved problems }}{\# \text { total problems }}$
- $S:=$ sum of best 5 sessions

Grading - Exercises

- Beginning of session: announce which problems you solved
- Points per session: $6 \cdot \frac{\# \text { solved problems }}{\# \text { total problems }}$
- $S:=$ sum of best 5 sessions
- Presentation of solution at the board: $0-5$ points
- $B:=$ sum of best 2 presentations

Grading - Exercises

$S+B$ max. 40

- ≥ 20 : "genügend (4)"
- ≥ 25 : "befriedigend (3)"
- ≥ 30 : "gut (2)"
- ≥ 35 : "sehr gut (1)"

Basic notations

$$
\mathbb{N}:=\{0,1,2, \ldots\}
$$

Basic notations

$$
\mathbb{N}:=\{0,1,2, \ldots\}
$$

Definition

Graph: pair $G=(V, E)$, where $E \subseteq\binom{V}{2}$.

- $V=V(G)$ vertex set, $E=E(G)$ edge set of G;

Basic notations

$$
\mathbb{N}:=\{0,1,2, \ldots\}
$$

Definition

Graph: pair $G=(V, E)$, where $E \subseteq\binom{V}{2}$.

- $V=V(G)$ vertex set, $E=E(G)$ edge set of G;
- $|G|:=|V(G)|, \| G| |:=|E(G)| ;$

Basic notations

$$
\mathbb{N}:=\{0,1,2, \ldots\}
$$

Definition

Graph: pair $G=(V, E)$, where $E \subseteq\binom{V}{2}$.

- $V=V(G)$ vertex set, $E=E(G)$ edge set of G;
- $|G|:=|V(G)|,\|G\|:=|E(G)|$;
- Short notation $u v$ for $\{u, v\}$.

Basic notations

$$
\mathbb{N}:=\{0,1,2, \ldots\}
$$

Definition

Graph: pair $G=(V, E)$, where $E \subseteq\binom{V}{2}$.

- $V=V(G)$ vertex set, $E=E(G)$ edge set of G;
- $|G|:=|V(G)|,\|G\|:=|E(G)|$;
- Short notation $u v$ for $\{u, v\}$.

All graphs finite.

Adjajencies and incidencies

Definition

$v, w \in V(G)$
－v, w adjacent（neighbours）$: \Longleftrightarrow v w \in E(G)$ ；

Adjajencies and incidencies

Definition

$v, w \in V(G), e, f \in E(G)$

- v, w adjacent (neighbours) $: \Longleftrightarrow v w \in E(G)$;
- e, f adjacent $: \Longleftrightarrow e \cap f \neq \emptyset$;

Adjajencies and incidencies

Definition

$v, w \in V(G), e, f \in E(G)$

- v, w adjacent (neighbours) $: \Longleftrightarrow v w \in E(G)$;
- e, f adjacent $: \Longleftrightarrow e \cap f \neq \emptyset$;
- v, e incident $: \Longleftrightarrow v \in e$.

Neighbourhoods

Definition
$v \in V(G)$

- neighbourhood of $v: N(v):=\{n b ' s$ of $v\}$;

Neighbourhoods

Definition

$v \in V(G), U \subseteq V(G)$

- neighbourhood of $v: N(v):=\{n b$'s of $v\}$;
- neighbourhood of $U: N(U):=\left(\cup_{u \in U} N(u)\right) \backslash U$.

Degrees

Definition

$v \in V(G)$

- Degree of $v: d_{G}(v)=d(v):=\#$ incident edges $=|N(v)| ;$

Degrees

Definition

$v \in V(G)$

- Degree of $v: d_{G}(v)=d(v):=\#$ incident edges $=|N(v)| ;$
- v isolated $: \Longleftrightarrow d(v)=0$;

Degrees

Definition

$v \in V(G)$

- Degree of $v: d_{G}(v)=d(v):=\#$ incident edges $=|N(v)| ;$
- v isolated $: \Longleftrightarrow d(v)=0$;
- minimum degree $\delta(G):=\min d(v)$;
- average degree $d(G):=\frac{1}{|G|} \sum d(v)$;
- maximum degree $\Delta(G):=\max d(v)$;

Degrees

Definition

$v \in V(G)$

- Degree of $v: d_{G}(v)=d(v):=\#$ incident edges $=|N(v)| ;$
- v isolated $: \Longleftrightarrow d(v)=0$;
- minimum degree $\delta(G):=\min d(v)$;
- average degree $d(G):=\frac{1}{|G|} \sum d(v)$;
- maximum degree $\Delta(G):=\operatorname{maxd}(v)$;
- Gr-regular $: \Longleftrightarrow d(v)=r \forall v$;

Degrees

Definition

$v \in V(G)$

- Degree of $v: d_{G}(v)=d(v):=\#$ incident edges $=|N(v)| ;$
- v isolated $: \Longleftrightarrow d(v)=0$;
- minimum degree $\delta(G):=\min d(v)$;
- average degree $d(G):=\frac{1}{|G|} \sum d(v)$;
- maximum degree $\Delta(G):=\max d(v)$;
- Gr-regular $: \Longleftrightarrow d(v)=r \forall v$;
- cubic $=3$-regular.

Degrees

Proposition

- $\delta(G) \leq d(G) \leq \Delta(G)$;
- $d(G)=\frac{2\|G\|}{|G|}$;
- \# vx's with odd degrees is even.

Degrees

Proposition

- $\delta(G) \leq d(G) \leq \Delta(G)$;
- $d(G)=\frac{2\|G\|}{|G|}$;
- \# vx's with odd degrees is even.

Proof.

Each edge is counted twice in $\sum d(v)$.

Isomorphisms

Definition

G, H isomorphic $: \Longleftrightarrow \exists$ bijection $f: V(G) \rightarrow V(H)$ s.t.

$$
\forall u, v \in V(G): u v \in E(G) \Longleftrightarrow f(u) f(v) \in E(H) .
$$

Isomorphisms

Definition

G, H isomorphic $: \Longleftrightarrow \exists$ bijection $f: V(G) \rightarrow V(H)$ s.t.

$$
\forall u, v \in V(G): u v \in E(G) \Longleftrightarrow f(u) f(v) \in E(H)
$$

Our graphs: up to isomorphisms.

Multigraphs

Definition

Multigraph: $M=(V, E)$, where E multiset from $\binom{V}{2} \cup\binom{V}{1}$.

Multigraphs

Definition

Multigraph: $M=(V, E)$, where E multiset from $\binom{V}{2} \cup\binom{V}{1}$.

- Multiedge: $e \in E$ multiple times (double edge, triple edge. . .);
- loop: $e \in E \cap\binom{V}{1}$.

Multigraphs

Definition

Multigraph: $M=(V, E)$, where E multiset from $\binom{V}{2} \cup\binom{V}{1}$.

- Multiedge: $e \in E$ multiple times (double edge, triple edge. . .);
- loop: $e \in E \cap\binom{V}{1}$.

Definition

$d(v):=\#$ incident edges, loops counted twice $\geq|N(v)|$.

Directed graphs

Definition
Directed graph: $D=(V, E)$, where $E \subseteq V^{2} \backslash\{(v, v) \mid v \in V\}$.

Directed graphs

Definition

Directed graph: $D=(V, E)$, where $E \subseteq V^{2} \backslash\{(v, v) \mid v \in V\}$.

- $(u, v)=$ edge from u to v;

Directed graphs

Definition

Directed graph: $D=(V, E)$, where $E \subseteq V^{2} \backslash\{(v, v) \mid v \in V\}$.

- $(u, v)=$ edge from u to v;
- indegree of $v: d^{-}(v):=\#$ edges to v;
- outdegree of $v: d^{+}(v):=\#$ edges away from v.

Directed graphs

Definition

Directed graph: $D=(V, E)$, where $E \subseteq V^{2} \backslash\{(v, v) \mid v \in V\}$.

- $(u, v)=$ edge from u to v;
- indegree of $v: d^{-}(v):=\#$ edges to v;
- outdegree of $v: d^{+}(v):=\#$ edges away from v.
- min/av./max degrees $\delta^{-}(D), \delta^{+}(D), d^{-}(D), d^{+}(D), \Delta^{-}(D)$, and $\Delta^{+}(D)$.

Weighted graphs

Definition
Weighted graph: Graph G with function $f: E(G) \rightarrow \mathbb{R}$. - $f(e)=$ weight of e.

Subgraphs

Definition

- H subgraph of $G: \Longleftrightarrow V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$; (Notation: $H \subseteq G$)

G

Subgraphs

Definition

- H subgraph of $G: \Longleftrightarrow V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$; (Notation: $H \subseteq G$)
- H proper subgraph of $G: \Longleftrightarrow H \subseteq G$ and $H \neq G$; (Notation: $H \subsetneq G$)

G

Subgraphs

Definition

- H subgraph of $G: \Longleftrightarrow V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$; (Notation: $H \subseteq G$)
- H proper subgraph of $G: \Longleftrightarrow H \subseteq G$ and $H \neq G$; (Notation: $H \subsetneq G$)
- H spanning subgraph $: \Longleftrightarrow H \subseteq G$ and $V(H)=V(G)$;

Subgraphs

Definition

- H subgraph of $G: \Longleftrightarrow V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$; (Notation: $H \subseteq G$)
- H proper subgraph of $G: \Longleftrightarrow H \subseteq G$ and $H \neq G$; (Notation: $H \subsetneq G$)
- H spanning subgraph $: \Longleftrightarrow H \subseteq G$ and $V(H)=V(G)$;
- H induced subgraph $: \Longleftrightarrow H \subseteq G$ and $E(H)=E(G) \cap\binom{V(H)}{2}$.

G

Subgraphs

Definition

$H_{1}, H_{2} \subseteq G$

- $H_{1} \cup H_{2}:=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right), E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$;
- $H_{1} \cap H_{2}:=\left(V\left(H_{1}\right) \cap V\left(H_{2}\right), E\left(H_{1}\right) \cap E\left(H_{2}\right)\right)$.

Paths

Definition

- Path of length n : graph P with $V(P)=\left\{v_{0}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(P)$ iff $i-j= \pm 1$. (Notation: $P=v_{0} \ldots v_{n}$)

Paths

Definition

- Path of length n : graph P with $V(P)=\left\{v_{0}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(P)$ iff $i-j= \pm 1$. (Notation: $P=v_{0} \ldots v_{n}$)
- $P v_{i}:=v_{0} \ldots v_{i}, v_{i} P:=v_{i} \ldots v_{n}$.

Paths

Definition

- Path of length n : graph P with $V(P)=\left\{v_{0}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(P)$ iff $i-j= \pm 1$. (Notation: $P=v_{0} \ldots v_{n}$)
- $P v_{i}:=v_{0} \ldots v_{i}, v_{i} P:=v_{i} \ldots v_{n}$.
- $A-B$ path $(A, B \subseteq V(G))$: path $P=v_{0} \ldots v_{n}$ in G with $V(P) \cap A=\left\{v_{0}\right\}$ and $V(P) \cap B=\left\{v_{n}\right\}$.

Paths

Definition

- Path of length n : graph P with $V(P)=\left\{v_{0}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(P)$ iff $i-j= \pm 1$. (Notation: $P=v_{0} \ldots v_{n}$)
- $P v_{i}:=v_{0} \ldots v_{i}, v_{i} P:=v_{i} \ldots v_{n}$.
- A-B path $(A, B \subseteq V(G))$: path $P=v_{0} \ldots v_{n}$ in G with $V(P) \cap A=\left\{v_{0}\right\}$ and $V(P) \cap B=\left\{v_{n}\right\}$.
- H-path $(H \subseteq G)$: path $v_{0} \ldots v_{n}$ in G with $n \geq 1$ and $H \cap P=\left\{v_{0}, v_{n}\right\}$.

Cycles and complete graphs

Definition

- Cycle of length $n(n \geq 3)$: graph C with $V(C)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(C)$ iff $i-j= \pm 1 \bmod n$.

Cycles and complete graphs

Definition

- Cycle of length $n(n \geq 3)$: graph C with $V(C)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(C)$ iff $i-j= \pm 1 \bmod n$.
- Complete graph $K^{n}:\left|V\left(K^{n}\right)\right|=n, E\left(K^{n}\right)=\binom{V\left(K^{n}\right)}{2}$.

Sets of vertices or of edges

Definition

$U \subseteq V(G)$

- Graph induced on $U: G[U]:=\left(U, E(G) \cap\binom{U}{2}\right)$.

Sets of vertices or of edges

Definition

$U \subseteq V(G)$

- Graph induced on $U: G[U]:=\left(U, E(G) \cap\binom{U}{2}\right)$.
- U complete (clique) $: \Longleftrightarrow G[U]$ complete.
- U independent (stable) $: \Longleftrightarrow G[U]$ edgeless.

Sets of vertices or of edges

Definition

$U \subseteq V(G)$

- Graph induced on $U: G[U]:=\left(U, E(G) \cap\binom{U}{2}\right)$.
- U complete (clique) $: \Longleftrightarrow G[U]$ complete.
- U independent (stable) $: \Longleftrightarrow G[U]$ edgeless.
- $G-U:=G[V(G) \backslash U]$.

Sets of vertices or of edges

Definition

$U \subseteq V(G), F \subseteq\binom{V(G)}{2}$.

- Graph induced on $U: G[U]:=\left(U, E(G) \cap\binom{U}{2}\right)$.
- U complete (clique) $: \Longleftrightarrow G[U]$ complete.
- U independent (stable) $: \Longleftrightarrow G[U]$ edgeless.
- $G-U:=G[V(G) \backslash U]$.
- F independent $: \Longleftrightarrow$ elements pairwise disjoint.

Sets of vertices or of edges

Definition

$U \subseteq V(G), F \subseteq\binom{V(G)}{2}$.

- Graph induced on $U: G[U]:=\left(U, E(G) \cap\binom{U}{2}\right)$.
- U complete (clique) $: \Longleftrightarrow G[U]$ complete.
- U independent (stable) $: \Longleftrightarrow G[U]$ edgeless.
- $G-U:=G[V(G) \backslash U]$.
- F independent $: \Longleftrightarrow$ elements pairwise disjoint.
- $G-F:=(V(G), E(G) \backslash F)$.

Sets of vertices or of edges

Definition

$U \subseteq V(G), F \subseteq\binom{V(G)}{2}$.

- Graph induced on $U: G[U]:=\left(U, E(G) \cap\binom{U}{2}\right)$.
- U complete (clique) $: \Longleftrightarrow G[U]$ complete.
- U independent (stable) $: \Longleftrightarrow G[U]$ edgeless.
- $G-U:=G[V(G) \backslash U]$.
- F independent $: \Longleftrightarrow$ elements pairwise disjoint.
- $G-F:=(V(G), E(G) \backslash F)$.
- $G+F:=(V(G), E(G) \cup F)$.

Short notation

Abbreviation if $A=\{a\}, B=\{b\}, U=\{u\}$, or $F=\{e\}$:
a-B path, $A-b$ path, $a-b$ path, $G-v, G-e, G+e$.

Bipartite graphs

Definition

- G bipartite: $V(G)=A \dot{\cup} B$ with $A, B \neq \emptyset$ independent.

Bipartite graphs

Definition

- G bipartite: $V(G)=A \dot{\cup} B$ with $A, B \neq \emptyset$ independent.
- Complete bipartite graph

$$
K_{s, t}:=(A \dot{\cup} B, A \times B),
$$

where $|A|=s,|B|=t$.

Bipartite graphs

Definition

- G bipartite: $V(G)=A \dot{\cup} B$ with $A, B \neq \emptyset$ independent.
- Complete bipartite graph

$$
K_{s, t}:=(A \dot{\cup} B, A \times B),
$$

where $|A|=s,|B|=t$.

Proposition

G bipartite $\Longleftrightarrow G$ has no odd cycles.

Bipartite graphs

Definition

- G bipartite: $V(G)=A \dot{\cup} B$ with $A, B \neq \emptyset$ independent.
- Complete bipartite graph

$$
K_{s, t}:=(A \dot{\cup} B, A \times B),
$$

where $|A|=s,|B|=t$.

Proposition

G bipartite $\Longleftrightarrow G$ has no odd cycles.

Proof.

Exercise.

Contractions

Definition

Contraction G / S (for $S \subseteq V(G)$):

$$
\begin{aligned}
& V(G / S):=V(G-S) \cup\{S\}, \\
& E(G / S):=E(G-S) \cup\{v S \mid \exists s \in S: v s \in E(G)\}
\end{aligned}
$$

Contractions

Definition

Contraction G / S (for $S \subseteq V(G)$):

$$
\begin{aligned}
& V(G / S):=V(G-S) \cup\{S\}, \\
& E(G / S):=E(G-S) \cup\{v S \mid \exists s \in S: v s \in E(G)\}
\end{aligned}
$$

For S_{1}, \ldots, S_{k} disjoint:

$$
G /\left(S_{1}, \ldots, S_{k}\right):=\left(\left(\left(G / S_{1}\right) / \ldots\right) / S_{k}\right) .
$$

Contractions

Definition

Contraction G / S (for $S \subseteq V(G)$):

$$
\begin{aligned}
& V(G / S):=V(G-S) \cup\{S\}, \\
& E(G / S):=E(G-S) \cup\{v S \mid \exists s \in S: v s \in E(G)\}
\end{aligned}
$$

For S_{1}, \ldots, S_{k} disjoint:

$$
G /\left(S_{1}, \ldots, S_{k}\right):=\left(\left(\left(G / S_{1}\right) / \ldots\right) / S_{k}\right) .
$$

Contractions

Definition

Contraction G / S (for $S \subseteq V(G)$):

$$
\begin{aligned}
& V(G / S):=V(G-S) \cup\{S\}, \\
& E(G / S):=E(G-S) \cup\{v S \mid \exists s \in S: v s \in E(G)\}
\end{aligned}
$$

For S_{1}, \ldots, S_{k} disjoint:

$$
G /\left(S_{1}, \ldots, S_{k}\right):=\left(\left(\left(G / S_{1}\right) / \ldots\right) / S_{k}\right) .
$$

Contractions

Definition

Contraction G / S (for $S \subseteq V(G)$):

$$
\begin{aligned}
& V(G / S):=V(G-S) \cup\{S\}, \\
& E(G / S):=E(G-S) \cup\{v S \mid \exists s \in S: v s \in E(G)\}
\end{aligned}
$$

For S_{1}, \ldots, S_{k} disjoint:

$$
G /\left(S_{1}, \ldots, S_{k}\right):=\left(\left(\left(G / S_{1}\right) / \ldots\right) / S_{k}\right) .
$$

Definition

- H minor of $G: H \subseteq G /\left(S_{1}, \ldots, S_{k}\right)$ for disjoint, connected branch sets S_{1}, \ldots, S_{k}.

Definition

- H minor of $G: H \subseteq G /\left(S_{1}, \ldots, S_{k}\right)$ for disjoint, connected branch sets S_{1}, \ldots, S_{k}.
- H subdivision of G : edges of $G \longrightarrow$ paths of length ≥ 1.

Definition

- H minor of $G: H \subseteq G /\left(S_{1}, \ldots, S_{k}\right)$ for disjoint, connected branch sets S_{1}, \ldots, S_{k}.
- H subdivision of G : edges of $G \longrightarrow$ paths of length ≥ 1.
- Branch vx of subdivision H : vx of G in H.

Definition

- H minor of $G: H \subseteq G /\left(S_{1}, \ldots, S_{k}\right)$ for disjoint, connected branch sets S_{1}, \ldots, S_{k}.
- H subdivision of G : edges of $G \longrightarrow$ paths of length ≥ 1.
- Branch vx of subdivision H : vx of G in H.
- H topological minor of $G: G$ contains subdivision of H.

Algorithms and running time

Abbreviation for running time: $n=|G|, m=\|G\|$.

Algorithms and running time

Abbreviation for running time: $n=|G|, m=\|G\|$.

Definition

$f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$.

- $f(n)=O(g(n)): \exists c^{+}, N>0$ s.t. $f(n) \leq c^{+} g(n) \forall n \geq N$;
- $f(n)=\Omega(g(n)): \exists c^{-}, N>0$ s.t. $f(n) \geq c^{-} g(n) \forall n \geq N$;
- $f(n)=\Theta(g(n)): f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Algorithms and running time

Abbreviation for running time: $n=|G|, m=\|G\|$.

Definition

$f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$.

- $f(n)=O(g(n)): \exists c^{+}, N>0$ s.t. $f(n) \leq c^{+} g(n) \forall n \geq N$;
- $f(n)=\Omega(g(n)): \exists c^{-}, N>0$ s.t. $f(n) \geq c^{-} g(n) \forall n \geq N$;
- $f(n)=\Theta(g(n)): f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Mostly: running time $f(n)=O(g(n))$ (worst case analysis).

