
Homepage

https://www.math.tugraz.at/comb/lehre

/1819/AAGT/AAGT.html

Grading – Lecture

Oral exams, dates by appointment

30 – 45 min

General ideas are more important than details

Grading – Lecture

Oral exams, dates by appointment

30 – 45 min

General ideas are more important than details

Grading – Lecture

Oral exams, dates by appointment

30 – 45 min

General ideas are more important than details

Grading – Exercises

Beginning of session: announce which problems you solved

Points per session: 6 · # solved problems

total problems
S := sum of best 5 sessions

Presentation of solution at the board: 0 – 5 points

B := sum of best 2 presentations

Grading – Exercises

Beginning of session: announce which problems you solved

Points per session: 6 · # solved problems

total problems
S := sum of best 5 sessions

Presentation of solution at the board: 0 – 5 points

B := sum of best 2 presentations

Grading – Exercises

Beginning of session: announce which problems you solved

Points per session: 6 · # solved problems

total problems
S := sum of best 5 sessions

Presentation of solution at the board: 0 – 5 points

B := sum of best 2 presentations

Grading – Exercises

S + B max. 40

≥ 20: “genügend (4)”

≥ 25: “befriedigend (3)”

≥ 30: “gut (2)”

≥ 35: “sehr gut (1)”

Basic notations

N := {0, 1, 2, . . . }

Definition

Graph: pair G = (V ,E), where E ⊆
(V
2

)
.

V = V (G) vertex set, E = E (G) edge set of G ;

|G | := |V (G)|, ‖G‖ := |E (G)|;
Short notation uv for {u, v}.

All graphs finite.

Basic notations

N := {0, 1, 2, . . . }

Definition

Graph: pair G = (V ,E), where E ⊆
(V
2

)
.

V = V (G) vertex set, E = E (G) edge set of G ;

|G | := |V (G)|, ‖G‖ := |E (G)|;
Short notation uv for {u, v}.

All graphs finite.

Basic notations

N := {0, 1, 2, . . . }

Definition

Graph: pair G = (V ,E), where E ⊆
(V
2

)
.

V = V (G) vertex set, E = E (G) edge set of G ;

|G | := |V (G)|, ‖G‖ := |E (G)|;

Short notation uv for {u, v}.

All graphs finite.

Basic notations

N := {0, 1, 2, . . . }

Definition

Graph: pair G = (V ,E), where E ⊆
(V
2

)
.

V = V (G) vertex set, E = E (G) edge set of G ;

|G | := |V (G)|, ‖G‖ := |E (G)|;
Short notation uv for {u, v}.

All graphs finite.

Basic notations

N := {0, 1, 2, . . . }

Definition

Graph: pair G = (V ,E), where E ⊆
(V
2

)
.

V = V (G) vertex set, E = E (G) edge set of G ;

|G | := |V (G)|, ‖G‖ := |E (G)|;
Short notation uv for {u, v}.

All graphs finite.

Adjajencies and incidencies

Definition

v ,w ∈ V (G)

, e, f ∈ E (G)

v ,w adjacent (neighbours) :⇐⇒ vw ∈ E (G);

e, f adjacent :⇐⇒ e ∩ f 6= ∅;
v , e incident :⇐⇒ v ∈ e.

w

v

Adjajencies and incidencies

Definition

v ,w ∈ V (G), e, f ∈ E (G)

v ,w adjacent (neighbours) :⇐⇒ vw ∈ E (G);

e, f adjacent :⇐⇒ e ∩ f 6= ∅;

v , e incident :⇐⇒ v ∈ e.

e f

Adjajencies and incidencies

Definition

v ,w ∈ V (G), e, f ∈ E (G)

v ,w adjacent (neighbours) :⇐⇒ vw ∈ E (G);

e, f adjacent :⇐⇒ e ∩ f 6= ∅;
v , e incident :⇐⇒ v ∈ e.

e

v

Neighbourhoods

Definition

v ∈ V (G)

, U ⊆ V (G)

neighbourhood of v : N(v) := {nb’s of v};

neighbourhood of U: N(U) :=
(⋃

u∈U N(u)
)
\ U.

v

N(v)

Neighbourhoods

Definition

v ∈ V (G), U ⊆ V (G)

neighbourhood of v : N(v) := {nb’s of v};
neighbourhood of U: N(U) :=

(⋃
u∈U N(u)

)
\ U.

U

N(U)

Degrees

Definition

v ∈ V (G)

Degree of v : dG (v) = d(v) := # incident edges = |N(v)|;

v isolated :⇐⇒ d(v) = 0;

minimum degree δ(G) := min d(v);

average degree d(G) := 1
|G |
∑

d(v);

maximum degree ∆(G) := max d(v);

G r -regular :⇐⇒ d(v) = r ∀v ;

cubic = 3-regular.

Degrees

Definition

v ∈ V (G)

Degree of v : dG (v) = d(v) := # incident edges = |N(v)|;
v isolated :⇐⇒ d(v) = 0;

minimum degree δ(G) := min d(v);

average degree d(G) := 1
|G |
∑

d(v);

maximum degree ∆(G) := max d(v);

G r -regular :⇐⇒ d(v) = r ∀v ;

cubic = 3-regular.

Degrees

Definition

v ∈ V (G)

Degree of v : dG (v) = d(v) := # incident edges = |N(v)|;
v isolated :⇐⇒ d(v) = 0;

minimum degree δ(G) := min d(v);

average degree d(G) := 1
|G |
∑

d(v);

maximum degree ∆(G) := max d(v);

G r -regular :⇐⇒ d(v) = r ∀v ;

cubic = 3-regular.

Degrees

Definition

v ∈ V (G)

Degree of v : dG (v) = d(v) := # incident edges = |N(v)|;
v isolated :⇐⇒ d(v) = 0;

minimum degree δ(G) := min d(v);

average degree d(G) := 1
|G |
∑

d(v);

maximum degree ∆(G) := max d(v);

G r -regular :⇐⇒ d(v) = r ∀v ;

cubic = 3-regular.

Degrees

Definition

v ∈ V (G)

Degree of v : dG (v) = d(v) := # incident edges = |N(v)|;
v isolated :⇐⇒ d(v) = 0;

minimum degree δ(G) := min d(v);

average degree d(G) := 1
|G |
∑

d(v);

maximum degree ∆(G) := max d(v);

G r -regular :⇐⇒ d(v) = r ∀v ;

cubic = 3-regular.

Degrees

Proposition

δ(G) ≤ d(G) ≤ ∆(G);

d(G) = 2‖G‖
|G | ;

vx’s with odd degrees is even.

Proof.

Each edge is counted twice in
∑

d(v).

Degrees

Proposition

δ(G) ≤ d(G) ≤ ∆(G);

d(G) = 2‖G‖
|G | ;

vx’s with odd degrees is even.

Proof.

Each edge is counted twice in
∑

d(v).

Isomorphisms

Definition

G ,H isomorphic :⇐⇒ ∃ bijection f : V (G)→ V (H) s.t.

∀u, v ∈ V (G) : uv ∈ E (G)⇐⇒ f (u)f (v) ∈ E (H).

Our graphs: up to isomorphisms.

Isomorphisms

Definition

G ,H isomorphic :⇐⇒ ∃ bijection f : V (G)→ V (H) s.t.

∀u, v ∈ V (G) : uv ∈ E (G)⇐⇒ f (u)f (v) ∈ E (H).

Our graphs: up to isomorphisms.

Multigraphs

Definition

Multigraph: M = (V ,E), where E multiset from
(V
2

)
∪
(V
1

)
.

Multiedge: e ∈ E multiple times (double edge, triple edge. . .);

loop: e ∈ E ∩
(V
1

)
.

double edge triple edge

loop

Definition

d(v) := # incident edges, loops counted twice ≥ |N(v)|.

Multigraphs

Definition

Multigraph: M = (V ,E), where E multiset from
(V
2

)
∪
(V
1

)
.

Multiedge: e ∈ E multiple times (double edge, triple edge. . .);

loop: e ∈ E ∩
(V
1

)
.

double edge triple edge

loop

Definition

d(v) := # incident edges, loops counted twice ≥ |N(v)|.

Multigraphs

Definition

Multigraph: M = (V ,E), where E multiset from
(V
2

)
∪
(V
1

)
.

Multiedge: e ∈ E multiple times (double edge, triple edge. . .);

loop: e ∈ E ∩
(V
1

)
.

double edge triple edge

loop

Definition

d(v) := # incident edges, loops counted twice ≥ |N(v)|.

Directed graphs

Definition

Directed graph: D = (V ,E), where E ⊆ V 2 \ {(v , v) | v ∈ V }.

(u, v) = edge from u to v ;

indegree of v : d−(v) := # edges to v ;

outdegree of v : d+(v) := # edges away from v .

min/av./max degrees δ−(D), δ+(D), d−(D), d+(D), ∆−(D),
and ∆+(D).

u v

w

Directed graphs

Definition

Directed graph: D = (V ,E), where E ⊆ V 2 \ {(v , v) | v ∈ V }.
(u, v) = edge from u to v ;

indegree of v : d−(v) := # edges to v ;

outdegree of v : d+(v) := # edges away from v .

min/av./max degrees δ−(D), δ+(D), d−(D), d+(D), ∆−(D),
and ∆+(D).

u v

w

Directed graphs

Definition

Directed graph: D = (V ,E), where E ⊆ V 2 \ {(v , v) | v ∈ V }.
(u, v) = edge from u to v ;

indegree of v : d−(v) := # edges to v ;

outdegree of v : d+(v) := # edges away from v .

min/av./max degrees δ−(D), δ+(D), d−(D), d+(D), ∆−(D),
and ∆+(D).

u v

w

Directed graphs

Definition

Directed graph: D = (V ,E), where E ⊆ V 2 \ {(v , v) | v ∈ V }.
(u, v) = edge from u to v ;

indegree of v : d−(v) := # edges to v ;

outdegree of v : d+(v) := # edges away from v .

min/av./max degrees δ−(D), δ+(D), d−(D), d+(D), ∆−(D),
and ∆+(D).

u v

w

Weighted graphs

Definition

Weighted graph: Graph G with function f : E (G)→ R.

f (e) = weight of e.

Subgraphs

Definition

H subgraph of G :⇐⇒ V (H) ⊆ V (G) and E (H) ⊆ E (G);
(Notation: H ⊆ G)

H proper subgraph of G :⇐⇒ H ⊆ G and H 6= G ;
(Notation: H (G)

H spanning subgraph :⇐⇒ H ⊆ G and V (H) = V (G);

H induced subgraph :⇐⇒ H ⊆ G and E (H) = E (G)∩
(V (H)

2

)
.

G

H

Subgraphs

Definition

H subgraph of G :⇐⇒ V (H) ⊆ V (G) and E (H) ⊆ E (G);
(Notation: H ⊆ G)

H proper subgraph of G :⇐⇒ H ⊆ G and H 6= G ;
(Notation: H (G)

H spanning subgraph :⇐⇒ H ⊆ G and V (H) = V (G);

H induced subgraph :⇐⇒ H ⊆ G and E (H) = E (G)∩
(V (H)

2

)
.

G

H

Subgraphs

Definition

H subgraph of G :⇐⇒ V (H) ⊆ V (G) and E (H) ⊆ E (G);
(Notation: H ⊆ G)

H proper subgraph of G :⇐⇒ H ⊆ G and H 6= G ;
(Notation: H (G)

H spanning subgraph :⇐⇒ H ⊆ G and V (H) = V (G);

H induced subgraph :⇐⇒ H ⊆ G and E (H) = E (G)∩
(V (H)

2

)
.

G

H

Subgraphs

Definition

H subgraph of G :⇐⇒ V (H) ⊆ V (G) and E (H) ⊆ E (G);
(Notation: H ⊆ G)

H proper subgraph of G :⇐⇒ H ⊆ G and H 6= G ;
(Notation: H (G)

H spanning subgraph :⇐⇒ H ⊆ G and V (H) = V (G);

H induced subgraph :⇐⇒ H ⊆ G and E (H) = E (G)∩
(V (H)

2

)
.

G

H

Subgraphs

Definition

H1,H2 ⊆ G

H1 ∪ H2 := (V (H1) ∪ V (H2),E (H1) ∪ E (H2));

H1 ∩ H2 := (V (H1) ∩ V (H2),E (H1) ∩ E (H2)).

Paths

Definition

Path of length n: graph P with V (P) = {v0, . . . , vn} and
vivj ∈ E (P) iff i − j = ±1. (Notation: P = v0 . . . vn)

Pvi := v0 . . . vi , viP := vi . . . vn.

A–B path (A,B ⊆ V (G)): path P = v0 . . . vn in G with
V (P) ∩ A = {v0} and V (P) ∩ B = {vn}.
H-path (H ⊆ G): path v0 . . . vn in G with n ≥ 1 and
H ∩ P = {v0, vn}.

Paths

Definition

Path of length n: graph P with V (P) = {v0, . . . , vn} and
vivj ∈ E (P) iff i − j = ±1. (Notation: P = v0 . . . vn)

Pvi := v0 . . . vi , viP := vi . . . vn.

A–B path (A,B ⊆ V (G)): path P = v0 . . . vn in G with
V (P) ∩ A = {v0} and V (P) ∩ B = {vn}.
H-path (H ⊆ G): path v0 . . . vn in G with n ≥ 1 and
H ∩ P = {v0, vn}.

Paths

Definition

Path of length n: graph P with V (P) = {v0, . . . , vn} and
vivj ∈ E (P) iff i − j = ±1. (Notation: P = v0 . . . vn)

Pvi := v0 . . . vi , viP := vi . . . vn.

A–B path (A,B ⊆ V (G)): path P = v0 . . . vn in G with
V (P) ∩ A = {v0} and V (P) ∩ B = {vn}.

H-path (H ⊆ G): path v0 . . . vn in G with n ≥ 1 and
H ∩ P = {v0, vn}.

Paths

Definition

Path of length n: graph P with V (P) = {v0, . . . , vn} and
vivj ∈ E (P) iff i − j = ±1. (Notation: P = v0 . . . vn)

Pvi := v0 . . . vi , viP := vi . . . vn.

A–B path (A,B ⊆ V (G)): path P = v0 . . . vn in G with
V (P) ∩ A = {v0} and V (P) ∩ B = {vn}.
H-path (H ⊆ G): path v0 . . . vn in G with n ≥ 1 and
H ∩ P = {v0, vn}.

Cycles and complete graphs

Definition

Cycle of length n (n ≥ 3): graph C with V (C) = {v1, . . . , vn}
and vivj ∈ E (C) iff i − j = ±1 mod n.

Complete graph Kn: |V (Kn)| = n, E (Kn) =
(V (Kn)

2

)
.

Cycles and complete graphs

Definition

Cycle of length n (n ≥ 3): graph C with V (C) = {v1, . . . , vn}
and vivj ∈ E (C) iff i − j = ±1 mod n.

Complete graph Kn: |V (Kn)| = n, E (Kn) =
(V (Kn)

2

)
.

Sets of vertices or of edges

Definition

U ⊆ V (G)

, F ⊆
(V (G)

2

)
.

Graph induced on U: G [U] :=
(
U,E (G) ∩

(U
2

))
.

U complete (clique) :⇐⇒ G [U] complete.

U independent (stable) :⇐⇒ G [U] edgeless.

G − U := G [V (G) \ U].

F independent :⇐⇒ elements pairwise disjoint.

G − F := (V (G),E (G) \ F).

G + F := (V (G),E (G) ∪ F).

Sets of vertices or of edges

Definition

U ⊆ V (G)

, F ⊆
(V (G)

2

)
.

Graph induced on U: G [U] :=
(
U,E (G) ∩

(U
2

))
.

U complete (clique) :⇐⇒ G [U] complete.

U independent (stable) :⇐⇒ G [U] edgeless.

G − U := G [V (G) \ U].

F independent :⇐⇒ elements pairwise disjoint.

G − F := (V (G),E (G) \ F).

G + F := (V (G),E (G) ∪ F).

Sets of vertices or of edges

Definition

U ⊆ V (G)

, F ⊆
(V (G)

2

)
.

Graph induced on U: G [U] :=
(
U,E (G) ∩

(U
2

))
.

U complete (clique) :⇐⇒ G [U] complete.

U independent (stable) :⇐⇒ G [U] edgeless.

G − U := G [V (G) \ U].

F independent :⇐⇒ elements pairwise disjoint.

G − F := (V (G),E (G) \ F).

G + F := (V (G),E (G) ∪ F).

Sets of vertices or of edges

Definition

U ⊆ V (G), F ⊆
(V (G)

2

)
.

Graph induced on U: G [U] :=
(
U,E (G) ∩

(U
2

))
.

U complete (clique) :⇐⇒ G [U] complete.

U independent (stable) :⇐⇒ G [U] edgeless.

G − U := G [V (G) \ U].

F independent :⇐⇒ elements pairwise disjoint.

G − F := (V (G),E (G) \ F).

G + F := (V (G),E (G) ∪ F).

Sets of vertices or of edges

Definition

U ⊆ V (G), F ⊆
(V (G)

2

)
.

Graph induced on U: G [U] :=
(
U,E (G) ∩

(U
2

))
.

U complete (clique) :⇐⇒ G [U] complete.

U independent (stable) :⇐⇒ G [U] edgeless.

G − U := G [V (G) \ U].

F independent :⇐⇒ elements pairwise disjoint.

G − F := (V (G),E (G) \ F).

G + F := (V (G),E (G) ∪ F).

Sets of vertices or of edges

Definition

U ⊆ V (G), F ⊆
(V (G)

2

)
.

Graph induced on U: G [U] :=
(
U,E (G) ∩

(U
2

))
.

U complete (clique) :⇐⇒ G [U] complete.

U independent (stable) :⇐⇒ G [U] edgeless.

G − U := G [V (G) \ U].

F independent :⇐⇒ elements pairwise disjoint.

G − F := (V (G),E (G) \ F).

G + F := (V (G),E (G) ∪ F).

Short notation

Abbreviation if A = {a}, B = {b}, U = {u}, or F = {e}:

a–B path, A–b path, a–b path, G − v , G − e, G + e.

Bipartite graphs

Definition

G bipartite: V (G) = A ∪̇B with A,B 6= ∅ independent.

Complete bipartite graph

Ks,t := (A ∪̇B,A× B),

where |A| = s, |B| = t.

Proposition

G bipartite ⇐⇒ G has no odd cycles.

Proof.

Exercise.

Bipartite graphs

Definition

G bipartite: V (G) = A ∪̇B with A,B 6= ∅ independent.

Complete bipartite graph

Ks,t := (A ∪̇B,A× B),

where |A| = s, |B| = t.

Proposition

G bipartite ⇐⇒ G has no odd cycles.

Proof.

Exercise.

Bipartite graphs

Definition

G bipartite: V (G) = A ∪̇B with A,B 6= ∅ independent.

Complete bipartite graph

Ks,t := (A ∪̇B,A× B),

where |A| = s, |B| = t.

Proposition

G bipartite ⇐⇒ G has no odd cycles.

Proof.

Exercise.

Bipartite graphs

Definition

G bipartite: V (G) = A ∪̇B with A,B 6= ∅ independent.

Complete bipartite graph

Ks,t := (A ∪̇B,A× B),

where |A| = s, |B| = t.

Proposition

G bipartite ⇐⇒ G has no odd cycles.

Proof.

Exercise.

Contractions

Definition

Contraction G/S (for S ⊆ V (G)):

V (G/S) := V (G − S) ∪ {S},
E (G/S) := E (G − S) ∪ {vS | ∃s ∈ S : vs ∈ E (G)}

For S1, . . . ,Sk disjoint:

G/(S1, . . . ,Sk) :=
((

(G/S1)/ . . .
)
/Sk

)
.

v
S

G

S v

G/S

Contractions

Definition

Contraction G/S (for S ⊆ V (G)):

V (G/S) := V (G − S) ∪ {S},
E (G/S) := E (G − S) ∪ {vS | ∃s ∈ S : vs ∈ E (G)}

For S1, . . . ,Sk disjoint:

G/(S1, . . . ,Sk) :=
((

(G/S1)/ . . .
)
/Sk

)
.

v
S1

S2

S3 S4

S5

G

S1

S2

v

G/(S1,S2)

Contractions

Definition

Contraction G/S (for S ⊆ V (G)):

V (G/S) := V (G − S) ∪ {S},
E (G/S) := E (G − S) ∪ {vS | ∃s ∈ S : vs ∈ E (G)}

For S1, . . . ,Sk disjoint:

G/(S1, . . . ,Sk) :=
((

(G/S1)/ . . .
)
/Sk

)
.

v
S1

S2

S3 S4

S5

G

S1

S2

S3

v

G/(S1, . . . ,S3)

Contractions

Definition

Contraction G/S (for S ⊆ V (G)):

V (G/S) := V (G − S) ∪ {S},
E (G/S) := E (G − S) ∪ {vS | ∃s ∈ S : vs ∈ E (G)}

For S1, . . . ,Sk disjoint:

G/(S1, . . . ,Sk) :=
((

(G/S1)/ . . .
)
/Sk

)
.

v
S1

S2

S3 S4

S5

G

S1

S2

S3 S4

v

G/(S1, . . . ,S4)

Contractions

Definition

Contraction G/S (for S ⊆ V (G)):

V (G/S) := V (G − S) ∪ {S},
E (G/S) := E (G − S) ∪ {vS | ∃s ∈ S : vs ∈ E (G)}

For S1, . . . ,Sk disjoint:

G/(S1, . . . ,Sk) :=
((

(G/S1)/ . . .
)
/Sk

)
.

v
S1

S2

S3 S4

S5

G

S1

S2

S3 S4

S5

v

G/(S1, . . . ,S5)

Minors

Definition

H minor of G : H ⊆ G/(S1, . . . ,Sk) for disjoint, connected
branch sets S1, . . . ,Sk .

H subdivision of G : edges of G −→ paths of length ≥ 1.

Branch vx of subdivision H: vx of G in H.

H topological minor of G : G contains subdivision of H.

v
S1

S2

S3 S4

S5

G

S1

S2

S3 S4

S5

v

G/(S1, . . . ,S5)H

Minors

Definition

H minor of G : H ⊆ G/(S1, . . . ,Sk) for disjoint, connected
branch sets S1, . . . ,Sk .

H subdivision of G : edges of G −→ paths of length ≥ 1.

Branch vx of subdivision H: vx of G in H.

H topological minor of G : G contains subdivision of H.

G H

Minors

Definition

H minor of G : H ⊆ G/(S1, . . . ,Sk) for disjoint, connected
branch sets S1, . . . ,Sk .

H subdivision of G : edges of G −→ paths of length ≥ 1.

Branch vx of subdivision H: vx of G in H.

H topological minor of G : G contains subdivision of H.

G H

Minors

Definition

H minor of G : H ⊆ G/(S1, . . . ,Sk) for disjoint, connected
branch sets S1, . . . ,Sk .

H subdivision of G : edges of G −→ paths of length ≥ 1.

Branch vx of subdivision H: vx of G in H.

H topological minor of G : G contains subdivision of H.

H G

Algorithms and running time

Abbreviation for running time: n = |G |, m = ‖G‖.

Definition

f , g : N→ R>0.

f (n) = O(g(n)): ∃c+,N > 0 s.t. f (n) ≤ c+g(n) ∀n ≥ N;

f (n) = Ω(g(n)): ∃c−,N > 0 s.t. f (n) ≥ c−g(n) ∀n ≥ N;

f (n) = Θ(g(n)): f (n) = O(g(n)) and f (n) = Ω(g(n)).

Mostly: running time f (n) = O(g(n)) (worst case analysis).

Algorithms and running time

Abbreviation for running time: n = |G |, m = ‖G‖.

Definition

f , g : N→ R>0.

f (n) = O(g(n)): ∃c+,N > 0 s.t. f (n) ≤ c+g(n) ∀n ≥ N;

f (n) = Ω(g(n)): ∃c−,N > 0 s.t. f (n) ≥ c−g(n) ∀n ≥ N;

f (n) = Θ(g(n)): f (n) = O(g(n)) and f (n) = Ω(g(n)).

Mostly: running time f (n) = O(g(n)) (worst case analysis).

Algorithms and running time

Abbreviation for running time: n = |G |, m = ‖G‖.

Definition

f , g : N→ R>0.

f (n) = O(g(n)): ∃c+,N > 0 s.t. f (n) ≤ c+g(n) ∀n ≥ N;

f (n) = Ω(g(n)): ∃c−,N > 0 s.t. f (n) ≥ c−g(n) ∀n ≥ N;

f (n) = Θ(g(n)): f (n) = O(g(n)) and f (n) = Ω(g(n)).

Mostly: running time f (n) = O(g(n)) (worst case analysis).

