Homepage

https://www.math.tugraz.at/comb/lehre /1819/AAGT/AAGT.html • Oral exams, dates by appointment

- Oral exams, dates by appointment
- 30 45 min

- Oral exams, dates by appointment
- 30 45 min
- General ideas are more important than details

• Beginning of session: announce which problems you solved

- Beginning of session: announce which problems you solved
- Points per session:  $6 \cdot \frac{\# \text{ solved problems}}{\# \text{ total problems}}$
- S := sum of best 5 sessions

- Beginning of session: announce which problems you solved
- Points per session:  $6 \cdot \frac{\# \text{ solved problems}}{\# \text{ total problems}}$
- S := sum of best 5 sessions
- Presentation of solution at the board: 0 5 points
- B := sum of best 2 presentations

- $S + B \max$ . 40
  - $\geq$  20: "genügend (4)"
  - $\geq$  25: "befriedigend (3)"
  - $\geq$  30: "gut (2)"
  - $\bullet$   $\geq$  35: ''sehr gut (1)''

# $\mathbb{N}:=\{0,1,2,\dots\}$

$$\mathbb{N}:=\{0,1,2,\dots\}$$

Graph: pair G = (V, E), where  $E \subseteq {V \choose 2}$ .

$$\mathbb{N}:=\{0,1,2,\dots\}$$

Graph: pair G = (V, E), where  $E \subseteq {\binom{V}{2}}$ .

• V = V(G) vertex set, E = E(G) edge set of G;

• 
$$|G| := |V(G)|, ||G|| := |E(G)|;$$

$$\mathbb{N}:=\{0,1,2,\dots\}$$

Graph: pair G = (V, E), where  $E \subseteq {\binom{V}{2}}$ .

• V = V(G) vertex set, E = E(G) edge set of G;

• 
$$|G| := |V(G)|, ||G|| := |E(G)|;$$

• Short notation uv for  $\{u, v\}$ .

$$\mathbb{N}:=\{0,1,2,\dots\}$$

Graph: pair G = (V, E), where  $E \subseteq {\binom{V}{2}}$ .

• V = V(G) vertex set, E = E(G) edge set of G;

• 
$$|G| := |V(G)|, ||G|| := |E(G)|;$$

• Short notation uv for  $\{u, v\}$ .

All graphs finite.

# Adjajencies and incidencies

## Definition

 $v, w \in V(G)$ 

• v, w adjacent (neighbours) : $\iff vw \in E(G)$ ;



# Adjajencies and incidencies

## Definition

$$v, w \in V(G), e, f \in E(G)$$

• v, w adjacent (neighbours) : $\iff vw \in E(G)$ ;

• 
$$e, f$$
 adjacent : $\iff e \cap f \neq \emptyset$ ;



## Adjajencies and incidencies

$$v, w \in V(G), e, f \in E(G)$$

- v, w adjacent (neighbours) : $\iff vw \in E(G)$ ;
- e, f adjacent : $\iff e \cap f \neq \emptyset$ ;
- v, e incident : $\iff v \in e$ .



# Neighbourhoods

## Definition

 $v \in V(G)$ 

• neighbourhood of v:  $N(v) := {nb's of v};$ 



# Neighbourhoods

#### Definition

## $v \in V(G)$ , $U \subseteq V(G)$

- neighbourhood of v:  $N(v) := \{nb's \text{ of } v\};$
- neighbourhood of  $U: N(U) := (\bigcup_{u \in U} N(u)) \setminus U.$





 $v \in V(G)$ 

• Degree of v:  $d_G(v) = d(v) := \#$  incident edges = |N(v)|;

御 と くきと くきと

æ

- $v \in V(G)$ 
  - Degree of v:  $d_G(v) = d(v) := \#$  incident edges = |N(v)|;

æ

白 ト イヨト イヨト

• v isolated : $\iff d(v) = 0;$ 

- $v \in V(G)$ 
  - Degree of v:  $d_G(v) = d(v) := \#$  incident edges = |N(v)|;
  - v isolated : $\iff d(v) = 0;$
  - minimum degree  $\delta(G) := \min d(v);$
  - average degree  $d(G) := \frac{1}{|G|} \sum d(v);$
  - maximum degree  $\Delta(G) := \max d(v)$ ;

- $v \in V(G)$ 
  - Degree of v:  $d_G(v) = d(v) := \#$  incident edges = |N(v)|;
  - v isolated : $\iff d(v) = 0;$
  - minimum degree  $\delta(G) := \min d(v);$
  - average degree  $d(G) := \frac{1}{|G|} \sum d(v);$
  - maximum degree  $\Delta(G) := \max d(v)$ ;
  - G r-regular : $\iff d(v) = r \forall v;$

- $v \in V(G)$ 
  - Degree of v:  $d_G(v) = d(v) := \#$  incident edges = |N(v)|;
  - v isolated : $\iff d(v) = 0;$
  - minimum degree  $\delta(G) := \min d(v);$
  - average degree  $d(G) := \frac{1}{|G|} \sum d(v);$
  - maximum degree  $\Delta(G) := \max d(v)$ ;
  - G r-regular : $\iff d(v) = r \forall v;$
  - cubic = 3-regular.

## Proposition

- $\delta(G) \leq d(G) \leq \Delta(G);$
- $d(G) = \frac{2\|G\|}{|G|};$
- # vx's with odd degrees is even.

æ

白 ト イヨト イヨト

## Proposition

•  $\delta(G) \leq d(G) \leq \Delta(G);$ 

• 
$$d(G) = \frac{2\|G\|}{|G|};$$

## Proof.

Each edge is counted twice in  $\sum d(v)$ .

◆□ → ◆□ → ◆ = → ◆ = → へへの

G, H isomorphic :  $\iff \exists$  bijection  $f: V(G) \rightarrow V(H)$  s.t.

 $\forall u, v \in V(G) \colon uv \in E(G) \iff f(u)f(v) \in E(H).$ 

G, H isomorphic : $\iff \exists$  bijection  $f: V(G) \rightarrow V(H)$  s.t.

$$\forall u, v \in V(G) \colon uv \in E(G) \Longleftrightarrow f(u)f(v) \in E(H).$$

< ∃ >

Our graphs: up to isomorphisms.

Multigraph: M = (V, E), where E multiset from  $\binom{V}{2} \cup \binom{V}{1}$ .

聞 と く き と く き と

æ

Multigraph: M = (V, E), where E multiset from  $\binom{V}{2} \cup \binom{V}{1}$ .

- Multiedge:  $e \in E$  multiple times (double edge, triple edge...);
- loop:  $e \in E \cap \binom{V}{1}$ .



Multigraph: M = (V, E), where E multiset from  $\binom{V}{2} \cup \binom{V}{1}$ .

- Multiedge:  $e \in E$  multiple times (double edge, triple edge...);
- loop:  $e \in E \cap {\binom{V}{1}}$ .



#### Definition

d(v) := # incident edges, loops counted twice  $\geq |N(v)|$ .

Directed graph: D = (V, E), where  $E \subseteq V^2 \setminus \{(v, v) \mid v \in V\}$ .



æ

/₽ ► < ∃ ►

# Directed graphs

## Definition

Directed graph: D = (V, E), where  $E \subseteq V^2 \setminus \{(v, v) \mid v \in V\}$ .

• 
$$(u, v) = edge from u to v;$$



# Directed graphs

#### Definition

Directed graph: D = (V, E), where  $E \subseteq V^2 \setminus \{(v, v) \mid v \in V\}$ .

- (u, v) = edge from u to v;
- indegree of v:  $d^-(v) := \#$  edges to v;
- outdegree of  $v: d^+(v) := \#$  edges away from v.



Directed graph: D = (V, E), where  $E \subseteq V^2 \setminus \{(v, v) \mid v \in V\}$ .

- (u, v) = edge from u to v;
- indegree of v:  $d^-(v) := \#$  edges to v;
- outdegree of v:  $d^+(v) := \#$  edges away from v.
- min/av./max degrees  $\delta^-(D)$ ,  $\delta^+(D)$ ,  $d^-(D)$ ,  $d^+(D)$ ,  $\Delta^-(D)$ , and  $\Delta^+(D)$ .



Weighted graph: Graph G with function  $f: E(G) \to \mathbb{R}$ .

• 
$$f(e) =$$
weight of  $e$ .

# Subgraphs

## Definition

• *H* subgraph of  $G :\iff V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ ; (Notation:  $H \subseteq G$ )



# Subgraphs

- *H* subgraph of  $G :\iff V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ ; (Notation:  $H \subseteq G$ )
- *H* proper subgraph of  $G :\iff H \subseteq G$  and  $H \neq G$ ; (Notation:  $H \subsetneq G$ )



# Subgraphs

- *H* subgraph of  $G :\iff V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ ; (Notation:  $H \subseteq G$ )
- H proper subgraph of G : ⇐⇒ H ⊆ G and H ≠ G; (Notation: H ⊊ G)
- *H* spanning subgraph : $\iff H \subseteq G$  and V(H) = V(G);



# Subgraphs

- *H* subgraph of  $G :\iff V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ ; (Notation:  $H \subseteq G$ )
- *H* proper subgraph of  $G :\iff H \subseteq G$  and  $H \neq G$ ; (Notation:  $H \subsetneq G$ )
- *H* spanning subgraph : $\iff H \subseteq G$  and V(H) = V(G);
- *H* induced subgraph : $\iff H \subseteq G$  and  $E(H) = E(G) \cap \binom{V(H)}{2}$ .



# $\textit{H}_1,\textit{H}_2 \subseteq \textit{G}$

- $H_1 \cup H_2 := (V(H_1) \cup V(H_2), E(H_1) \cup E(H_2));$
- $H_1 \cap H_2 := (V(H_1) \cap V(H_2), E(H_1) \cap E(H_2)).$

э

白 ト イヨト イヨト

• Path of length *n*: graph *P* with  $V(P) = \{v_0, \ldots, v_n\}$  and  $v_i v_j \in E(P)$  iff  $i - j = \pm 1$ . (Notation:  $P = v_0 \ldots v_n$ )

∄▶ ∢≣▶ ∢

• Path of length *n*: graph *P* with  $V(P) = \{v_0, \ldots, v_n\}$  and  $v_i v_j \in E(P)$  iff  $i - j = \pm 1$ . (Notation:  $P = v_0 \ldots v_n$ )

∄▶ ∢≣▶ ∢

• 
$$Pv_i := v_0 \ldots v_i, v_i P := v_i \ldots v_n.$$

• Path of length *n*: graph *P* with  $V(P) = \{v_0, \ldots, v_n\}$  and  $v_i v_j \in E(P)$  iff  $i - j = \pm 1$ . (Notation:  $P = v_0 \ldots v_n$ )

• 
$$Pv_i := v_0 \ldots v_i, v_i P := v_i \ldots v_n.$$

• A-B path  $(A, B \subseteq V(G))$ : path  $P = v_0 \dots v_n$  in G with  $V(P) \cap A = \{v_0\}$  and  $V(P) \cap B = \{v_n\}$ .

• Path of length *n*: graph *P* with  $V(P) = \{v_0, \ldots, v_n\}$  and  $v_i v_j \in E(P)$  iff  $i - j = \pm 1$ . (Notation:  $P = v_0 \ldots v_n$ )

• 
$$Pv_i := v_0 \ldots v_i, v_i P := v_i \ldots v_n.$$

- A-B path  $(A, B \subseteq V(G))$ : path  $P = v_0 \dots v_n$  in G with  $V(P) \cap A = \{v_0\}$  and  $V(P) \cap B = \{v_n\}$ .
- *H*-path  $(H \subseteq G)$ : path  $v_0 \dots v_n$  in *G* with  $n \ge 1$  and  $H \cap P = \{v_0, v_n\}$ .

• Cycle of length  $n \ (n \ge 3)$ : graph C with  $V(C) = \{v_1, \ldots, v_n\}$ and  $v_i v_j \in E(C)$  iff  $i - j = \pm 1 \mod n$ .

- Cycle of length  $n \ (n \ge 3)$ : graph C with  $V(C) = \{v_1, \ldots, v_n\}$ and  $v_i v_j \in E(C)$  iff  $i - j = \pm 1 \mod n$ .
- Complete graph  $K^n$ :  $|V(K^n)| = n$ ,  $E(K^n) = \binom{V(K^n)}{2}$ .

 $U \subseteq V(G)$ 

• Graph induced on 
$$U$$
:  $G[U] := (U, E(G) \cap {\binom{U}{2}}).$ 

- $U \subseteq V(G)$ 
  - Graph induced on U:  $G[U] := (U, E(G) \cap {\binom{U}{2}}).$
  - U complete (clique) : $\iff G[U]$  complete.
  - U independent (stable) : $\iff$  G[U] edgeless.

 $U \subseteq V(G)$ 

- Graph induced on U:  $G[U] := (U, E(G) \cap {\binom{U}{2}}).$
- U complete (clique) : $\iff G[U]$  complete.
- U independent (stable) : $\iff$  G[U] edgeless.

• 
$$G - U := G[V(G) \setminus U]$$

$$U \subseteq V(G), F \subseteq \binom{V(G)}{2}.$$

- Graph induced on U:  $G[U] := (U, E(G) \cap {\binom{U}{2}}).$
- U complete (clique) : $\iff G[U]$  complete.
- U independent (stable) : $\iff$  G[U] edgeless.

• 
$$G - U := G[V(G) \setminus U]$$

• *F* independent :  $\iff$  elements pairwise disjoint.

$$U \subseteq V(G), F \subseteq \binom{V(G)}{2}.$$

- Graph induced on U:  $G[U] := (U, E(G) \cap {\binom{U}{2}}).$
- U complete (clique) : $\iff G[U]$  complete.
- U independent (stable) : $\iff$  G[U] edgeless.

• 
$$G - U := G[V(G) \setminus U]$$

• *F* independent :  $\iff$  elements pairwise disjoint.

• 
$$G - F := (V(G), E(G) \setminus F).$$

$$U \subseteq V(G), F \subseteq \binom{V(G)}{2}.$$

- Graph induced on U:  $G[U] := (U, E(G) \cap {\binom{U}{2}}).$
- U complete (clique) : $\iff G[U]$  complete.
- U independent (stable) : $\iff G[U]$  edgeless.

• 
$$G - U := G[V(G) \setminus U]$$

• *F* independent :  $\iff$  elements pairwise disjoint.

• 
$$G - F := (V(G), E(G) \setminus F).$$

• 
$$G + F := (V(G), E(G) \cup F).$$

Abbreviation if  $A = \{a\}$ ,  $B = \{b\}$ ,  $U = \{u\}$ , or  $F = \{e\}$ : a-B path, A-b path, a-b path, G - v, G - e, G + e.

æ

白 ト イヨト イヨト

• *G* bipartite:  $V(G) = A \cup B$  with  $A, B \neq \emptyset$  independent.

白マ・トレー

- G bipartite:  $V(G) = A \cup B$  with  $A, B \neq \emptyset$  independent.
- Complete bipartite graph

$$K_{s,t} := (A \dot{\cup} B, A \times B),$$

I ≥

where |A| = s, |B| = t.

- G bipartite:  $V(G) = A \cup B$  with  $A, B \neq \emptyset$  independent.
- Complete bipartite graph

$$K_{s,t} := (A \dot{\cup} B, A \times B),$$

where |A| = s, |B| = t.

# Proposition

G bipartite  $\iff$  G has no odd cycles.

- G bipartite:  $V(G) = A \cup B$  with  $A, B \neq \emptyset$  independent.
- Complete bipartite graph

$$K_{s,t} := (A \dot{\cup} B, A \times B),$$

where |A| = s, |B| = t.

# Proposition

G bipartite  $\iff$  G has no odd cycles.

#### Proof.

Exercise.

# Definition

Contraction 
$$G/S$$
 (for  $S \subseteq V(G)$ ):  
 $V(G/S) := V(G - S) \cup \{S\},$   
 $E(G/S) := E(G - S) \cup \{vS \mid \exists s \in S : vs \in E(G)\}$ 



- 4 回 > - 4 回 > - 4 回 >

æ

### Definition

Contraction G/S (for  $S \subseteq V(G)$ ):  $V(G/S) := V(G - S) \cup \{S\},$  $E(G/S) := E(G - S) \cup \{vS \mid \exists s \in S : vs \in E(G)\}$ 

$$G/(S_1,\ldots,S_k) := (((G/S_1)/\ldots)/S_k).$$



### Definition

# Contraction G/S (for $S \subseteq V(G)$ ): $V(G/S) := V(G - S) \cup \{S\},$ $E(G/S) := E(G - S) \cup \{vS \mid \exists s \in S : vs \in E(G)\}$

$$G/(S_1,\ldots,S_k) := (((G/S_1)/\ldots)/S_k).$$



### Definition

# Contraction G/S (for $S \subseteq V(G)$ ): $V(G/S) := V(G - S) \cup \{S\},$ $E(G/S) := E(G - S) \cup \{vS \mid \exists s \in S : vs \in E(G)\}$

$$G/(S_1,\ldots,S_k) := (((G/S_1)/\ldots)/S_k).$$



### Definition

Contraction G/S (for  $S \subseteq V(G)$ ):  $V(G/S) := V(G - S) \cup \{S\},$  $E(G/S) := E(G - S) \cup \{vS \mid \exists s \in S : vs \in E(G)\}$ 

$$G/(S_1,\ldots,S_k) := (((G/S_1)/\ldots)/S_k).$$



# Definition

*H* minor of *G*: *H* ⊆ *G*/(*S*<sub>1</sub>,...,*S*<sub>k</sub>) for disjoint, connected branch sets *S*<sub>1</sub>,...,*S*<sub>k</sub>.





- *H* minor of *G*: *H* ⊆ *G*/(*S*<sub>1</sub>,...,*S<sub>k</sub>*) for disjoint, connected branch sets *S*<sub>1</sub>,...,*S<sub>k</sub>*.
- *H* subdivision of *G*: edges of  $G \rightarrow$  paths of length  $\geq 1$ .



- *H* minor of *G*: *H* ⊆ *G*/(*S*<sub>1</sub>,...,*S<sub>k</sub>*) for disjoint, connected branch sets *S*<sub>1</sub>,...,*S<sub>k</sub>*.
- *H* subdivision of *G*: edges of  $G \longrightarrow$  paths of length  $\geq 1$ .
- Branch vx of subdivision H: vx of G in H.



- *H* minor of *G*: *H* ⊆ *G*/(*S*<sub>1</sub>,...,*S*<sub>k</sub>) for disjoint, connected branch sets *S*<sub>1</sub>,...,*S*<sub>k</sub>.
- H subdivision of G: edges of  $G \longrightarrow$  paths of length  $\geq 1$ .
- Branch vx of subdivision H: vx of G in H.
- H topological minor of G: G contains subdivision of H.



Abbreviation for running time: n = |G|, m = ||G||.

- 4 ≣ ▶ - 4

Abbreviation for running time: n = |G|, m = ||G||.

#### Definition

 $f,g:\mathbb{N}\to\mathbb{R}_{>0}.$ 

- f(n) = O(g(n)):  $\exists c^+, N > 0$  s.t.  $f(n) \le c^+g(n) \ \forall n \ge N$ ;
- $f(n) = \Omega(g(n))$ :  $\exists c^-, N > 0$  s.t.  $f(n) \ge c^-g(n) \ \forall n \ge N$ ;
- $f(n) = \Theta(g(n))$ : f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ .

Abbreviation for running time: n = |G|, m = ||G||.

### Definition

 $f,g:\mathbb{N}\to\mathbb{R}_{>0}.$ 

• 
$$f(n) = O(g(n))$$
:  $\exists c^+, N > 0$  s.t.  $f(n) \le c^+g(n) \ \forall n \ge N$ 

• 
$$f(n) = \Omega(g(n))$$
:  $\exists c^-, N > 0$  s.t.  $f(n) \ge c^-g(n) \ \forall n \ge N$ ;

• 
$$f(n) = \Theta(g(n))$$
:  $f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$ .

Mostly: running time f(n) = O(g(n)) (worst case analysis).