Homepage

https://www.math.tugraz.at/comb/lehre
/1819/AAGT/AAGT .html

Grading — Lecture

@ Oral exams, dates by appointment

Grading — Lecture

@ Oral exams, dates by appointment
@ 30 — 45 min

Grading — Lecture

@ Oral exams, dates by appointment
@ 30 — 45 min

@ General ideas are more important than details

Grading — Exercises

@ Beginning of session: announce which problems you solved

Grading — Exercises

@ Beginning of session: announce which problems you solved
solved problems

@ Points per session: 6 -
P # total problems

@ S := sum of best 5 sessions

Grading — Exercises

@ Beginning of session: announce which problems you solved
solved problems

Points per session: 6 -

total problems
S := sum of best 5 sessions

Presentation of solution at the board: 0 — 5 points

B := sum of best 2 presentations

Grading — Exercises

S + B max. 40

> 20: “geniigend (4)"
> 25: “befriedigend (3)"
> 30: “gut (2)"

> 35: “sehr gut (1)"

Basic notations

N:={0,1,2,...}

Basic notations

N:={0,1,2,...}

Definition
Graph: pair G = (V, E), where E C (\2/)
e V = V(G) vertex set, E = E(G) edge set of G;

Basic notations

N:={0,1,2,...}

Definition

Graph: pair G = (V, E), where E C (\2/)
e V = V(G) vertex set, E = E(G) edge set of G;
o |G| = |V(G)|. [IG] :=[E(G)I;

Basic notations

N:={0,1,2,...}

Definition

Graph: pair G = (V, E), where E C (\2/)
e V = V(G) vertex set, E = E(G) edge set of G;
° |G :=[V(G)] [IG]l = [E(G);

@ Short notation uv for {u, v}.

Basic notations

N:={0,1,2,...}

Definition

Graph: pair G = (V, E), where E C (\2/)
e V = V(G) vertex set, E = E(G) edge set of G;
° |G :=[V(G)] [IG]l = [E(G);

@ Short notation uv for {u, v}.

All graphs finite.

Adjajencies and incidencies

Definition
v,w e V(G)
@ v, w adjacent (neighbours) ;<= vw € E(G);

Adjajencies and incidencies

Definition

v,w e V(G), e, f € E(G)
@ v, w adjacent (neighbours) ;<= vw € E(G);
@ e, f adjacent (<= eNf # {;

Adjajencies and incidencies

Definition

v,w e V(G), e, f € E(G)
@ v, w adjacent (neighbours) ;<= vw € E(G);
@ e, f adjacent (<= eNf # {;

@ v, e incident (<= v € e.

Neighbourhoods

Definition
veV(G)
@ neighbourhood of v: N(v) := {nb’s of v};

N(v)

Neighbourhoods

Definition

veV(G), UCV(G)
@ neighbourhood of v: N(v) := {nb’s of v};
@ neighbourhood of U: N(U) := (U,ecy N(u)) \ U.

U

Degrees

v e V(G)
@ Degree of v: dg(v) = d(v) := # incident edges = |N(v)|;

Degrees

v e V(G)
@ Degree of v: dg(v) = d(v) := # incident edges = |N(v)|;
@ v isolated <= d(v) = 0;

Degrees

v e V(G)
@ Degree of v: dg(v) = d(v) := # incident edges = |N(v)|;
@ v isolated <= d(v) = 0;

@ minimum degree 6(G) := mind(v);
@ average degree d(G) := ﬁ >od(v);

@ maximum degree A(G) := maxd(v);

Degrees

v e V(G)
@ Degree of v: dg(v) = d(v) := # incident edges = |N(v)|;
@ v isolated <= d(v) = 0;

@ minimum degree 6(G) := mind(v);
@ average degree d(G) := ﬁ >od(v);

maximum degree A(G) := maxd(v);

G r-regular :<= d(v) = r Vv;

Degrees

v e V(G)
@ Degree of v: dg(v) = d(v) := # incident edges = |N(v)|;
v isolated <= d(v) = 0;

°
@ minimum degree 6(G) := mind(v);
@ average degree d(G) := ﬁ >od(v);

maximum degree A(G) := maxd(v);

G r-regular :<= d(v) = r Vv;

@ cubic = 3-regular.

Proposition

e 0(G) < d(G) < A(G);
_ 2llell.
e d(G) = G
@ # vx's with odd degrees is even.

Proposition

e 0(G) < d(G) < A(G);
_ 2llell.
e d(G) = G
@ # vx's with odd degrees is even.

Each edge is counted twice in) d(v).

Isomorphisms

Definition

G, H isomorphic :<=> 3 bijection f: V(G) — V(H) s.t.

Vu,v € V(G): uv € E(G) < f(u)f(v) € E(H).

Isomorphisms

Definition

G, H isomorphic :<=> 3 bijection f: V(G) — V(H) s.t.

Vu,v € V(G): uv € E(G) < f(u)f(v) € E(H).

Our graphs: up to isomorphisms.

Multigraphs

Definition

Multigraph: M = (V/, E), where E multiset from (%) U (Y).

Multigraphs

Definition

Multigraph: M = (V/, E), where E multiset from (%) U (Y).
e Multiedge: e € E multiple times (double edge, triple edge. ..);
@ loop: e€ EN (‘1/)

double edge triple edge

loop

Multigraphs

Definition

Multigraph: M = (V/, E), where E multiset from (%) U (Y).
e Multiedge: e € E multiple times (double edge, triple edge. ..);
@ loop: e€ EN (‘1/)

double edge triple edge

loop

Definition

d(v) := # incident edges, loops counted twice > |N(v)].

Directed graphs

Definition
Directed graph: D = (V, E), where E C V2\ {(v,v) | v € V}.

Directed graphs

Definition

Directed graph: D = (V, E), where E C V2\ {(v,v) | v € V}.

@ (u,v) = edge from u to v;

Directed graphs

Definition

Directed graph: D = (V, E), where E C V2\ {(v,v) | v € V}.
o (u,v) = edge from u to v;
@ indegree of v: d~(v) := # edges to v;
e outdegree of v: dT(v) := # edges away from v.

Directed graphs

Definition
Directed graph: D = (V, E), where E C V2\ {(v,v) | v € V}.

o (u,v) = edge from u to v;

@ indegree of v: d~(v) := # edges to v;

e outdegree of v: dT(v) := # edges away from v.

@ min/av./max degrees 6 (D), 67(D), d~(D), d*(D), A=(D),
and AT (D).

v

Weighted graphs

Definition

Weighted graph: Graph G with function f: E(G) — R.
e f(e) = weight of e.

Subgraphs

@ H subgraph of G :«<= V(H) C V(G) and E(H) C E(G);
(Notation: H C G)

Subgraphs

@ H subgraph of G :«<= V(H) C V(G) and E(H) C E(G);
(Notation: H C G)

@ H proper subgraph of G :<—= H C G and H # G;
(Notation: H C G)

Subgraphs

@ H subgraph of G :«<= V(H) C V(G) and E(H) C E(G);
(Notation: H C G)

@ H proper subgraph of G :<—= H C G and H # G;
(Notation: H C G)
@ H spanning subgraph :<= H C G and V(H) = V(G);

Subgraphs

@ H subgraph of G :«<= V(H) C V(G) and E(H) C E(G);
(Notation: H C G)

@ H proper subgraph of G :<—= H C G and H # G;
(Notation: H C G)

@ H spanning subgraph ;<= H C G and V(H) = V(G);

o H induced subgraph :<= H C G and E(H) = E(G)n (V).

H

Subgraphs

Definition

Paths

e Path of length n: graph P with V(P) = {w,..., vy} and
viv; € E(P) iff i — j = £1. (Notation: P = vp...v,)

Paths

e Path of length n: graph P with V(P) = {w,..., vy} and
viv; € E(P) iff i — j = £1. (Notation: P = vp...v,)

@ Pvi i =vwy...v;, ViP == vj...vp.

Paths

e Path of length n: graph P with V(P) = {w,..., vy} and
viv; € E(P) iff i — j = £1. (Notation: P = vp...v,)

@ Pvi i =vwy...v;, ViP == vj...vp.

e A-B path (A,B C V(G)): path P = vy...v, in G with
V(P)NA={w} and V(P)N B = {v,}.

Paths

e Path of length n: graph P with V(P) = {w,..., vy} and
viv; € E(P) iff i — j = £1. (Notation: P = vp...v,)

@ Pvi i =vwy...v;, ViP == vj...vp.

e A-B path (A,B C V(G)): path P = vy...v, in G with
V(P)NA={w} and V(P)N B = {v,}.

@ H-path (H C G): path vp...v, in G with n>1 and
HN P ={v,vn}.

Cycles and complete graphs

Definition

@ Cycle of length n (n > 3): graph C with V(C) = {vi,...,vs}
and v;v; € E(C) iff i — j = £1 mod n.

Cycles and complete graphs

Definition

@ Cycle of length n (n > 3): graph C with V(C) = {vi,...,vs}
and v;v; € E(C) iff i — j = £1 mod n.

e Complete graph K": |V(K")| = n, E(K") = (V(gn))'

Sets of vertices or of edges

UC V(G)
o Graph induced on U: G[U] := (U, E(G)N (‘2/)).

Sets of vertices or of edges

UC V(G)
o Graph induced on U: G[U] := (U, E(G)N (‘2/)).
@ U complete (clique) :<= G[U] complete.
@ U independent (stable) ;<= G[U] edgeless.

Sets of vertices or of edges

UC V(G)
Graph induced on U: G[U] := (U, E(G)N (‘2/)).
U complete (clique) :<= G[U] complete.
U independent (stable) :<= G[U] edgeless.
G — U := G[V(G)\ U].

Sets of vertices or of edges

Uc V(G) Fc ().

Graph induced on U: G[U] = (U, E(6)N (4)).

U complete (clique) :<= G[U] complete.
U independent (stable) :<= G[U] edgeless.
G — U :=G[V(G)\ U].

F independent :<=> elements pairwise disjoint.

Sets of vertices or of edges

Uc V(G) Fc ().

Graph induced on U: G[U] = (U, E(6)N (4)).

U complete (clique) :<= G[U] complete.

U independent (stable) :<= G[U] edgeless.

G — U :=G[V(G)\ U].

F independent :<=> elements pairwise disjoint.
G—F :=(V(G),E(G)\ F).

Sets of vertices or of edges

Uc V(G) Fc ().
Graph induced on U: G[U] := (U, E(G)N (‘2/)).
U complete (clique) :<= G[U] complete.
U independent (stable) :<= G[U] edgeless.
G — U :=G[V(G)\ U].
F independent :<=> elements pairwise disjoint.
G—F :=(V(G),E(G)\ F).
G+ F :=(V(G),E(G)UF).

Short notation

Abbreviation if A= {a}, B={b}, U= {u}, or F = {e}:

a—B path, A-b path, a~-b path, G—v, G—¢, G +e.

Bipartite graphs

Definition
e G bipartite: V(G) = AU B with A, B # () independent.

Bipartite graphs

Definition

e G bipartite: V(G) = AU B with A, B # () independent.
@ Complete bipartite graph
Ks: = (AUB,Ax B),
where |A| =s, |B| = t.

Bipartite graphs

Definition
e G bipartite: V(G) = AU B with A, B # () independent.
@ Complete bipartite graph
Ks: = (AUB,Ax B),
where |A| =s, |B| = t.

Proposition
G bipartite <= G has no odd cycles.

Bipartite graphs

Definition
e G bipartite: V(G) = AU B with A, B # () independent.
@ Complete bipartite graph
Ks: = (AUB,Ax B),
where |A| =s, |B| = t.

Proposition
G bipartite <= G has no odd cycles.

Exercise.

Contractions

Definition
Contraction G/S (for S C V(G)):
V(G/S):= V(G- S)U{S},
E(G/S) =E(G—-S)U{vS|3dseS:vsec E(G)}

G G/S

Contractions

Definition
Contraction G/S (for S C V(G)):

V(G/S):= V(G- S)U{S},

E(G/S) =E(G—-S)U{vS|3dseS:vsec E(G)}
For Sy,..., Sk disjoint:

G/(S1,...,5) = (((G/Sl)/...)/Sk).

v 51 v
Sy Ss S5
G G/(51,%)

S3 S4

Contractions

Definition
Contraction G/S (for S C V(G)):

V(G/S):= V(G- S)U{S},

E(G/S) =E(G—-S)U{vS|3dseS:vsec E(G)}
For Sy,..., Sk disjoint:

G/(S1,...,5) = (((G/Sl)/...)/Sk).
51

v 51 v
52 55 52

c G/(S1,...,5s)
S3

Contractions

Definition
Contraction G/S (for S C V(G)):

V(G/S):= V(G- S)U{S},

E(G/S) =E(G—-S)U{vS|3dseS:vsec E(G)}
For Sy,..., Sk disjoint:

G/(S1,...,5) = (((G/Sl)/...)/Sk).
51

v 51 v
52 55 52

G G/(Si,...,5s)
S5 Sy

Contractions

Definition
Contraction G/S (for S C V(G)):

V(G/S):= V(G- S)U{S},

E(G/S) =E(G—-S)U{vS|3dseS:vsec E(G)}
For Sy,..., Sk disjoint:

G/(S1,...,5) = (((G/Sl)/...)/Sk).
51

v 51 v
S5 Ss S, Ss
G G/(51,---,Ss)
S3 Sy

Minors

Definition

@ H minor of G: HC G/(51,. ..

branch sets 51, ..., Sk.

, Sk) for disjoint, connected

Minors

Definition
@ H minor of G: HC G/(S1,...,Sk) for disjoint, connected
branch sets 51, ..., Sk.

@ H subdivision of G: edges of G — paths of length > 1.

Minors

Definition
@ H minor of G: HC G/(S1,...,Sk) for disjoint, connected
branch sets 51, ..., Sk.

@ H subdivision of G: edges of G — paths of length > 1.

@ Branch vx of subdivision H: vx of G in H.

Minors

Definition
@ H minor of G: HC G/(S1,...,Sk) for disjoint, connected
branch sets 51, ..., Sk.

@ H subdivision of G: edges of G — paths of length > 1.

@ Branch vx of subdivision H: vx of G in H.

@ H topological minor of G: G contains subdivision of H.

Algorithms and running time

Abbreviation for running time: n = |G|, m = ||G]|.

Algorithms and running time

Abbreviation for running time: n = |G|, m = ||G]|.

Definition

f,g: N — Ryp.
e f(n) = O(g(n)): Ict,N > 0s.t. f(n) < ctg(n) Vn> N,
o f(n)=Q(g(n)): 3c=,N>0s.t. f(n) > c g(n) Vn> N,
o 7(n) = ©(g(n)): F(n) = O(g(n) and f() = Ag(n).

Algorithms and running time

Abbreviation for running time: n = |G|, m = ||G]|.

Definition

f,g: N — Ryp.
e f(n) = O(g(n)): Ict,N > 0s.t. f(n) < ctg(n) Vn> N,
o f(n)=Q(g(n)): 3c=,N>0s.t. f(n) > c g(n) Vn> N,
o (n) = O(g(n)): F(n) = O(g(n)) and (n) = Qg (n).

Mostly: running time f(n) = O(g(n)) (worst case analysis).

